Pular para o conteúdo principal

 


A TEORIA X - DE EDSON ECKS, EXPLICA OS PROCESSOS HISTÓRICOS DA TEORIA DA GRAVITAÇÃO E DA RELATIVIDADE, ONDE EXPÕE SUAS PRÓPRIAS TEORIAS À PARTIR DESTAS.




APRESENTAÇÃO


                                  Edson Ecks Gomes: escritor, músico-compositor (rock, MPB...), desenhista... Origem: Amazono (Manaus-Pará), nordestino (Fortaleza-Pernambuco), Brasil-Portugal, Americano Latino

Ecks é um escritor na área da Ciensôfia, da poesia e da literatura. No campo da ciência e da filosofia, metafisica, cosmologia... faz analises, criticas, sobre os mais variados pensadores, suas filosofias e suas teorias cientificas. Pois acredita que todo conhecimento de tempos em tempos deve ser reavaliado para não se dogmatizar, travar o avanço universal.  

A primeira parte do trabalho aqui apresentado visa um breve resumo da Origem da Física Moderna, ressaltando seus alicerces desde Copérnico, Galileu, Kepler, Huygens, Leibniz, Hooke, Newton...

A segunda parte é relativa às críticas sobre essas teorias, como por exemplo, ‘A lei da Inercia’ de Descartes-Galileu-Newton. Ecks explica sua teoria da Lei Da Dinâmica:
Nada está em ‘repouso, Tudo se move em múltiplos movimentos, geometrias; tudo se move em ritmo, lento, ‘estático’, acelerado__ Tanto na realidade clássica (esta que vemos e sentimos) como na realidade infra (que não vemos e não podemos sentir, naturalmente) não existe o ‘repouso’, o não movimento.... Pois tudo se move, oscila, vibra, troca informações...

E aplica as ‘Três Leis Da Dinâmica’ (Ecks), as ‘Três Do Movimento’ (Newton), da física mecanicista moderna, a gravidade, a constante G...

Uma Breve História Sobre A Física Moderna


Ecks


Capítulo l -  Em Nome de Kepler 
Capítulo ll - Issac Newton, Leibniz , Robert Hooker 
Capítulo ll - A história da relatividade.
Equivalência massa-energia – Precursores Da Fórmula E = mc2




Não se pode falar de Newton , sem passar pela a fantástica vida do grande Kepler .




EM NOME DE KEPLER - EDSON ECKS







Em Nome De Kepler







Edson ecks







Muitas vezes entendemos a historia da ciência de forma fria, porque sempre a avaliamos a partir apenas das teorias e de suas descobertas, mas é preciso entender que por trás dessas teorias e descobertas, há seres humanos, sentido o que qualquer ser humano sente. Não apresentar também esse lado torna a ciência como algo frio distante, mas se ao contrário, revelarmos o lado humano dos pesquisadores, com todas as suas virtudes com todos os seus erros, a ciência se tornará algo amplo, belo, e porque não dizer trágico também, porque é assim que caminhamos entre belezas e tragédias, pessoais-coletivas-universais.




Não pretendo me alongar sobre a vida de Kepler, porém, lhes mostrarei uma resumida biografia de Kepler, para você entender como um ser humano pode lutar até o fim, contra as adversidades da vida, e da morte. 

Kepler terá sua vida marcada pelas as tragédias, mas nunca desistirá de seus sonhos, creio que foi isso que o manteve obstinado pela a vida, pela a ciência.  A paixão pela a descoberta iluminará seus olhos, em direção ás estrelas, mas sem esquecer-se da Terra.

 Kepler sabia exatamente o que queria dizer o Poeta Fernando Pessoa com ‘um ideal, uma causa, o que se escolhe fazer é mais importante do que a própria vida’. Kepler jamais duvidou disso,. e nem eu. Edson Ecks





A primeira parte desse trabalho tem uma resumida biografia de Kepler, na segunda parte, temos o método cientifico de Kepler, em relação ao de Francis Bacon, Galileu e Newton. Na terceira parte. Suas teorias e suas descobertas, para você entender que Kepler não era apenas um astrônomo, mais também um grande ser humano, físico-teórico (como chamamos hoje), um ‘astrofísico’, um inventor, um grande matemático.







KEPLER, VIDA









Seu pai tinha um caráter furioso, obstinado e briguento, mais tarde passou a viver como um vagabundo, e teve um final brutal.



Dos 9 aos 11 anos, kepler trabalhará de jornaleiro.




Em 1577 sua mãe o levará a um lugar alto, parar verem um cometa passar. 




Em 1580, seu pai lhe mostrara um eclipse lunar, e como a Lua se tornara vermelha.



Kepler perdoava seus pais, pois o horoscopo dizia que eles nasceram sobre uma ‘má estrela’.


Dos seus seis irmãos, três morrem em tenra idade.


Kepler era fraco fisicamente, e tinha hipocondria, e que todo tipo de doença de pele parecia padecer.


Em uma peça da escola sobre Batista foi posto para representar Mariana, por causa do seu corpo magro.

Kepler já havia se decidido pela a vida religiosa, mas recebe uma carta do Seminário de Graz (província austríaca), que desejava um professor de matemática, Kepler fora indicado. Mesmo relutante, o próprio padre lhe aconselhou a ir, foi para Graz. Onde sua vida mudaria para sempre, o caminho das estrelas estavam abertos para ele.


O matemático astrólogo Kepler, em 1595, na Áustria previu uma onda de frio me uma invasão dos turcos, houve um frio intenso para os povos dos Alpes, e os turcos devastaram, pilharam metade da Europa.


Em 1611 morre sua esposa, e seus dois filhos.


Katharina, mãe de Kepler, foi acusada de feitiçaria, o processo durou seis anos, e terminou em 3  de abril de 1621, depois de ficar prisioneira por um ano na Torre de Guglingen, por uma liberação inesperada. A pobre mulher, esgotada faleceu em 13 de abril de 1622: Deus disse Kepler, de uma só vez pôs fim a vida da minha mãe e a sua querela.

Quando Katharina foi acusada à caça ‘as bruxas’ estava no auge. Em poucos meses, entre 1615 e 1616, seis  mulheres foram acusadas de feitiçaria em Leonberg, exatamente onde vivia a mãe de Kepler. Em Weil, entre 1615 e 1629. Trinta e oito ‘bruxas’, ‘em nome de Deus’, tiveram morte atroz na fogueira.

Em 27 de abril, de 1597, casa-se, sob um ‘céu funesto’, com Barbara Muller.

Em 1613, casa-se pela a segunda vez, com Suzanna Reuttinger, a filha do casal morre em tenra infância.

Kepler e Galileu faziam mapas astrais, na época a astronomia ainda andava ‘de mãos dadas’ com a astrologia, Kepler dará um grande salto para esse divórcio.

Galileu gostava do apoio de Kepler, mas nunca lhe enviou a luneta que Kepler havia lhe solicitado.


E tão ‘fácil’ ler as três de Kepler hoje, mas na conclusão de Harmonia do Mundo: o autor resume o percurso que, em 24 anos o conduzira a terceira lei.

Houve muitos conflitos entre Tycho Brahe e Johannes Kepler, principalmente em relação aos seus sistemas cosmológicos.


Em 1597, Tycho Brahe advertido por Cristiano lV, novo rei da Dinamarca, por seu temperamento insuportável para com os seus comandados, deixaria Hven. A corte de Rodolfo ll, o recebe como o novo matemático imperial, em 1599.

Em abril de 1600, após uma violenta discursão. Kepler deixou o Castelo de Benatek rumo a Praga, de onde escrevera uma carta cheia de insultos a Tycho, seguida alguns dias depois de humildes desculpas. Mas uma vez o destino dá um golpe em Kepler. Três semanas depois Tycho foi buscar Kepler, que voltou ao Castelo, toda sua família estará lá em outubro. Enquanto isso em Graz, todos os luteranos foram condenados definitivamente ao exilio, com isso, Kepler, não teria nenhuma escolha. O mau humor e a soberba de Tycho eram agora, ‘a nova terra prometida’, para Kepler e sua família. Mas O castelo de Tycho, pela a astronomia, realmente era um Paraíso para Kepler, excelentes equipamentos de observações celestes, e promissores dados de Tycho à disposição do gênio de Kepler.

As publicações de Kepler geralmente eram de uma ‘luta de titânica’: Kepler termina em 1606, a Nova Astronomia, mas só será publicada em 1609. Sem falar que enfrentar batalhas terríveis com os herdeiros de Brahe, que queriam, por exemplo, que Kepler mantivesse o sistema de Brahe, que Kepler já aquela altura havia superado. Kepler teve muitas dificuldades para lançar suas obras. Em partes por causa de um enorme custo de uma publicação, que geralmente ele não tinha condições de assumir.


Johannes  Kepler morre no dia 15 de novembro de 1630.  Nem seu túmulo ficou em paz, pois a Guerra dos Trinta anos acabou por destruir o cemitério onde estava enterrado. Na noite de sua morte seu jovem ajudante Jacob Bansch registrou um eclipse solar. Abriu-se o portal por onde a alma de Kepler adentrou o Universo.














Kepler o Astrofísico



Kepler o Astrofísico










Muito se fala sobre o método cientifico de Galileu, ou sobre o método cientifico de Newton, este que consideravam, como o ‘apogeu da ciência moderna’, porém, Galileu, e principalmente Newton, ‘seguiam os antigos’, a matemática, e a geometria clássica.


Mesmo Galileu conhecendo as leis de Kepler, conservaria as orbitas circulares, ao invés das elipses de Kepler, porque ‘os círculos são belos’, não as elipses. Estás que no leito de morte, Tycho Brahe teria feito Kepler prometer não abandoná-las, e o seu sistema em que o Sol gira em torno da Terra, e os planetas em torno do Sol.



Fala-se muito que Newton ‘desenvolveu a teoria da gravitação’ aos vinte seis anos, mas na verdade a primeira edição dos Principia, fora lançado quando Newton tinha 45 anos. E os dados de sua juventude, não expressam realmente essa lei, somente Kepler, Galileu e Hooke, lhes abrirão as portas para essa visão.

Newton formula figuras geométricas, os Principia é um livro geométrico. Newton não rompe com os antigos geômetras, pelo o contrário os enaltece, e abomina a visão mecanicista (Descartes...), de um Universo que funciona sem o seu ‘Relojoeiro Divino’, escravo da sua própria criação.


Porém, tanto Kepler, Galileu e Newton, ainda postulavam as ‘estrelas fixas’.


MÉTODO KEPLERIANO












Kepler desejava uma astronomia fundamentada na física. Naquela época escreve a seu predecessor no estudo de Marte, dizendo que ‘a física e a astronomia devem ser estudadas simultaneamente’; as duas ciências são tão estritamente ligadas, que nenhuma delas pode atingir a perfeição sem a outra.

Kepler defendia que a astronomia ‘não devia ser sustentada em causas fictícias (‘sol imaginário’), mas em causas físicas’. Em sua carta a Herwart Von Hohenburg, em 10 de fevereiro de 1605, define seu objetivo de ‘mostra o mundo não como uma máquina animal, mas como um relógio ‘ (com leis físicas definidas). Em primeiro lugar encontrar as causa físicas dos fenômenos, somente depois disso poderá ser confirmado o fundamento da descoberta.


Hipótese astronômica









A hipótese astronômica. Significa que a astronomia não deveria se limitar a comentar os dados recolhidos, Kepler introduz a ideia de uma astronomia à priori: uma disciplina que formularia hipóteses sensatas que deferiam ser conferidas pelos os mediadores. Evocava a evolução da hipótese em astronomia, desde Tales. Opera Omnio – 1858, publicada pela a primeira vez por Carl Frisch.


Na Nova Astronomia, Kepler, se incumbe à tarefa extremamente difícil. Por um lado, ele devia introduzir conceitos novos, com demonstrações que, sensatas ou não, seguiram esquemas lógicos, obrigando-o por vezes a mergulhar em cálculos, longos e complexos.


Apesar de sobre-humano, o trabalho de Kepler não suscitou o entusiasmo de seus contemporâneos. Fora  criticado por seu primeiro ‘tutor do conhecimento’ Masclin, fabricius e Longomontanus, sobretudo em razão de sua obstinação em exigir justificativas físicas em seu modelo. Kepler sustentava que a astronomia não deve se fundamentar em hipóteses fictícias (poliedros...), mais em causas físicas. O caminho para a astrofísica estava aberto.


Isso é ciência moderna.







Vamos começar pelo o ‘fim’, primeiramente falaremos da três de Kepler, o valor imenso destas, e como elas revolucionaram a compreensão do estudo sobre o sistema Solar. Na sequencia, veremos outras dezenas de contribuições de Kepler à gravitação Universal, física, óptica, suas contribuições a ‘astrofísica’, supernova. Faz parte do conhecimento universal-popular  que ‘o Sol gira sobre si mesmo, igualmente a Terra, e que a Terra e os planetas giram em torno do Sol’, que cometam podem  atravessar ‘cair nas esferas’ (planetas), que não se pode colocar o Sol em ‘regularidades’, como os planetas, porque o Sol é, como ‘os cabelos da medusa: inconstante’, mas o que poucos sabem que foi Kepler, audaciosamente, quem fez essas descobertas.


AS TRÊS LEIS DE KEPLER




As três leis que Kepler formulou para o movimento dos planetas e seus satélites naturais. A primeira afirma que as órbitas dos planetas são elipses, sendo o Sol um dos focos destas trajetórias. A segunda lei diz que um planeta percorre áreas iguais em tempos iguais, que é como quem diz: um planeta tem um movimento mais rápido quando está próximo do Sol do que quando está afastado dele. Por fim, a terceira postula que as dimensões das órbitas dos planetas estão relacionadas com o tempo que dura as suas trajetórias em torno do seu foco (podendo, neste caso, ser o Sol). 




Kepler contribuía de maneira decisiva para a regularidade do movimento dos planetas. Em duas obras em 1609 e depois em 1619, e ele anunciaria as três leis que regem os movimentos dos planetas em torno do Sol, as três leis de Kepler.



A três leis de Kepler não foram aceitas imediatamente: ao contrário numerosos astrônomos entre eles, Galileu, as contestaram, como não acreditar, nos ‘círculos perfeitos’, para acreditar em elipses. Mas a verdade é que Kepler adotando o sistema das elipses obtinha previsões bem melhores sobre o movimento dos planetas. kepler deu um grande salto do ponto de vista das previsões cifradas.
Não se sabia a causa do movimento dos planetas (na época seis), e a terceira lei de Kepler abre caminho para tal explicação.

Não se sabia a causa do movimento dos planetas (na época seis), e a terceira lei de Kepler abre caminho para tal explicação.

 Em 1602, Kepler adquire uma cópia do livro do médico e físico Wiliam Gilbert (1544-1609). Intitulada De Magnete, de 1600.








Gilbert compara a Terra a um grande Imã. Ele pensava poder provar os efeitos do magnetismo terrestre por meio de modelos constituídos de pequenas esferas de magnetita. Os partidários da explicação magnética descrevem a força magnética como invisível não material e capaz de agir a distancia.


Kepler, agora dirá que a ‘afinidade’ (atração) entre os planetas e Sol, e objetos na Terra, se dar por causa do magnetismo. O Sol é a anima motrix (alma motor)do sistema solar, dotado de uma polaridade magnética, que se estende pelo o espaço. O Sol gira em torno de si mesmo   -   fato que a observações das manchas solares feitas por Kepler, será confirmado muitos anos depois  -  e essa rotação é a causa da revolução dos planetas em torno do Sol. Os planetas possuem uma polaridade magnética que os atrai para o Sol durante metade de sua orbita, e os repele durante a outra metade.



Hoje sabemos que a Terra possui um grande ‘imã eletromagnético’, que de tempos em tempos, investes suas polaridades. Será que Gilbert e Kepler, estariam tão errados assim? Veremos isso mais adiante.


Não veremos vestígios dessa ideia de uma força não material, aprisionada no Sol, capaz de agir a distancia, que provocava o movimento dos planetas obedecendo as suas leis. Não veremos vestígios dessa ideia na resposta que Newton deu a Halley. Ela jamais será citada nos Principia. Mas Kepler, já especulava que uma força invisível existia, e que causava a ‘afinidade’ (atração), entre 
os planetas e o Sol.






Os Principia, de Newton, é um tanto quanto um ‘livro em branco’, sobre seus precursores, principalmente sobre Kepler. Como veremos no decorrer do trabalho aqui apresentado.

Brahe perderá o nariz em um duelo de ‘cavalheiros’, fará uma prótese de ouro para ‘substituir’ o nariz perdido no confronto com o seu rival. Morre em, Tycho Brahe, o gênio arrogante, indomável, que também escreverá seu nome no templo sagrado da astronomia, e ainda deixou o caminho aberto para o seu auxiliar (Kepler) desbravar o sistema solar.


Kepler morre em 1630, e Tycho lhe abre os portões sagrados (das estrelas), com um sorriso largo e orgulhoso no rosto.







Kepler e suas descobertas revolucionárias












‘é o erro que nos revela o caminho da verdade’ Kepler.


Muito se fala sobre Kepler ser um dos Pilares da Astronomia, mais Kepler irá romper com os antigos geômetras, e definirá uma astronomia voltada para hipóteses (teorias), e observações físicas, aqui a astronomia define-se em antes e depois de Kepler, abrindo caminho para a astrofísica.



 Seu método científico mostrou-se muito mais amplo e produtivo que os de Galileu e Newton (que ainda eram ‘geômetras’), Kepler rompe com a geometria. Kepler também olhou o Mundo de forma física, suas hipóteses (‘teorias’) físicas mostrarem-se de grande valor, afastando-se do método baconiano científico, de não formular ‘hipóteses mágicas’, como por exemplo, dizer que a Lua atraia a massa d’água. Método que foi seguido à risca por Newton, o que o levou a nunca postular ‘o que era a gravitação’. Para a gravidade, a atração dos corpos celestes e terrestres, Kepler, postulou a teoria magnética da gravidade.







Mais o que muitos não sabem, é que Newton dedicou seus últimos anos de vida procurando identificar as causas da gravidade. Até o inicio dos anos de 1686. Considerava que a gravidade deve ser um éter que preenche inteiramente o espaço: o éter seria o agente ativo que permite Deus atuar sobre a matéria passiva.


Mesmo que Kepler tivesse postulados dez teorias equivocadas sobre como se dava a ‘afinidade’ (atração), entre os corpos celestes e terrestres, o efeito da  ‘afinidade’ (atração), permaneceria intocável.




Vejamos agora as magnificas observações,  conclusões e descobertas de Johannes Kepler, através de seu método à  priori e a posteriori, e que Ecks, completará, e da posteriori a priori.

Seguindo o movimento das manchas solares, concluiu em O Mistério, que o Sol girava em torno de si mesmo. (essa comprovação cientifica se deu muito anos depois), e ‘leva com ele’ os planetas.


Kepler teorizou que haveria satélites em Marte, e estava longe de ser um equivoco -  Demos e Fobos, os dois satélites de Marte foram descobertos em 1877, pelo o americano Asaph Hail.




Para Tycho Brahe, o Sol gira em torno da Terra, e os planetas em torno do Sol.


Kepler_ O movimento dos planetas deve se referir ao Sol (físico) e não a um ponto puramente matemático.

se repartia ‘sobre uma esfera (planeta), já que ela se espalha pelo o espaço, a ação do Sol (que nós nomearíamos de gravitação) se repartiria unicamente sobre o plano identificado pela a órbita do planeta em questão  ­-  ele deduziria que ela diminui proporcionalmente a distância ao Sol e não ao quadrado da distancia. O Mistério.


O movimento (dos planetas) se acelera ou se retarda, segundo a proximidade ou a distancia do plano em relação ao Sol. Kepler se afasta das órbitas circulares de Brahe, e entra nas órbitas elípticas, por ele propostas.


 Kepler foi o primeiro a explicar os princípios de como funciona um telescópio e a relação entre a Lua e as marés.







Kepler E a Óptica








Outro grande mérito de Kepler foram seus estudos sobre a óptica moderna, os primeiros a investigar a formação de imagens com câmeras pinhole (sem lente), a explicar o processo de visão por refração no olho e o uso dos dois olhos para a percepção de profundidade e a formular óculos para miopia.








Em seu livro Óptica (1603) tem intuições geniais, como a ideia, de que a luz é associada ao calor e que os corpos iluminados são sempre aquecidos, em diversos graus, naturalmente.

Além disso, Kepler explora a representação da propagação em linha reta (os raios) para explicar fenômenos mais complexos: utilizar assim esses métodos que chamamos hoje de óptica geométrica, para descreve a reflexão sobre os espelhos, a localização das imagens, a refração pela a passagem em diferentes meios.



Em 1857, o historiador de ciências Poggendorf, em uma de suas aulas, a contribuições de Johannes Kepler à óptica. O jovem astrônomo Schiaparelli, que estava no auditório, tomou as seguintes notas:



Com os seus Ad Vitellionem poralipomena (1604), Kepler é sem dúvida o fundador da Dióptrica matemática. Nessa obra, ele daria à lei da refração a forma i-i’=ni+m/cosi, onde i é o ângulo de incidência i’, o ângulo de refração, e m e n, duas constantes. Foi o primeiro a afirmar que a visão era formada sobre a retina; ele explica a miopia, a presbetia e a óptica das lunetas. Estudou a irradiação e explicou por que, nos eclipses lunares, a parte  luminosa do disco parecia ter um diâmetro maior, tinha concepções exatas sobre a refração astronômica, enquanto Tycho acreditava que era por causa da distancia. Em 1611, ele publica sua Dioptrica, na qual a lei da refração era indicada de uma forma mais correta i=mi’ que, para os pequenos ângulos, era suficientemente exata. Calculava que o coeficiente da refração da água era 3/2. Ele mediria a refração com a ajuda de cubos de vidro, conhecia a aberração esférica e sabia que  apenas os espelhos parabólicos produziam imagens exatas. Inventaria o telescópico astronômico e mostraria como ‘endireitar’ os objetos com a ajuda de uma lente.


















suas massas-energias fossem negativas, elas se repeliriam, e a pedra ficaria suspensa no ar’.

 Ecks analisa os sistemas tanto do ponto de vista de massa, como energia contida nesses sistemas, e entre os sistemas. Estuda o macro (planetas...) como se fosse ‘partículas’ em interação... Um estudo mais detalhe veremos mais adiante.

A gravidade segundo Kepler, depende das dimensões dos corpos, se a Terra não fosse redonda, os corpos não seriam atraídos em direção ao seu centro, mas ao longo das direções que mudaria segundo a localização. E se a Terra deixasse de exercer sua própria atração sobre as águas, elas seriam atraídas pela a Lua.


__se colocamos uma pedra entre duas pedras, está se posicionará em um ponto que determinado ‘pelas as relações entre suas dimensões’.
Com isso Kepler que dizer que há uma atração entre as pedras, que se uma pedra de uma lateral for maior do que a da outra lateral, a pedra menor posicionada no meio, tenderá a oscilar em sua direção, por sofrer maior ‘afinidade’ (atração).  


É preciso entender que depois que Kepler conhece o trabalho de Gilbert sobre o magnetismo, Kepler passará a indica que essa ‘afinidade’ (atração), é causada por magnetismo.






Newton nos Principia, calculará a força dessa atração, também nos corpos terrestres. E não postulará nenhuma causa física para a atração gravitacional. E jamais citará que Kepler havia postulado, que havia uma força imaterial que atrai os planetas ao Sol, e que o mesmo também ocorria na Terra, entre seus objetos.




Os Principia

Apesar dos elogios e dos esforços de Halley, os Principia são uma esquisitice aos membros da Royal Society, que continua fiel ao ideal baconiano de filosofia experimental útil a humanidade. Não obstante, a importância da obra é reconhecida imediatamente, até mesmo por seus críticos. Será preciso esperar a segunda metade do século para se ter uma teoria – devida principalmente ao matemático suíço Leonard Euler – sobre o movimento dos corpos sólidos.


‘A maçã de Newton’


Não há nenhuma referencia de Newton em nenhum dos seus escritos sobre ‘a queda da maçã’, que lhe teria despertado a ideia da ‘Gravitação universal’. Conta-se, entre muitas coisas que o filosofo Voltaire, teria criado essa lenda.


A Lei da Gravitação Universal


Johanes Kepler (1571-1630) em sua Nova Astronomia, fez um esforço magnifico para o empreendimento de uma mente brilhante para compreender os movimentos celestes em termos de uma lei universal. Kepler tinha obsessão pitagórica, pela a busca da harmonia universal.
Em seus primeiros trabalhos acredita que: “O poder divino é a alma motriz que gera os movimentos dos planetas”. Mas no ‘Nova Astronomia’ mudara o termo para força. A porta para a gravitação está aberta. Aqui Newton entra unificando as três leis de Kepler (das orbitas planetárias) com a lei dos projeteis (objetos) na terra, de Galileu, e aplica a ‘queda’ da Lua sobre a órbita da Terra.

Porem, Kepler não se limitou apenas a analisa da atração (‘afinidade’) dos corpos celestes, mas também fez excelentes observações sobre a atração dos corpos na Terra:


No livro ‘Nova Astronomia’, Kepler, anuncia na introdução ‘a verdadeira doutrina sobre as virtudes’, da qual anunciaria os axiomas (verdades):


__a gravidade é uma afinidade entre dois corpos (análoga à afinidade magnética) por meio da qual, por exemplo, a Terra atrai fortemente uma pedra, está última atrai um pouco a Terra.

O que dirá Newton nos Principia que, ‘tanto a Terra atrai os corpos, como os corpos atraem a Terra, tanto a Terra atrai uma pedra, como a pedra atrai a Terra, minimamente’. Newton calculará a força dessa atração.


Newton não explica o que realmente causa essa atração (‘afinidade’), mas seu precursor Kepler, busca a teoria em que a luminosidade solar atrai os planetas, também aderiu a atração magnética, difundida na época por Gilbert, para explicar o fenômeno de atração entre os planetas, e a aplica  aos objetos na Terra. Hoje sabemos que a Terra possui um poderosíssimo campo eletromagnético. Ou seja, Gilbert a seu modo, e a sua época, teve uma boa intuição...





Newton unificou a física terrestre com a celeste ?




Dizer que Newton unificou a física terrestre com a celeste é um belo elogio, mas há grandes ressalvas. No céu além de planetas também há estrelas, que Newton e seus contemporâneos julgavam como imóveis.

Em meados do século XVIII, o astrônomo Thomas Wrigth, o matemático Lambert e o filosofo Kant, colocaram as estrelas para bailar. A regularidade do cosmo de Ptolomeu, Copérnico e de Kepler desaparecem no sistema newtoniano de massas em interação.

Quando o teólogo Bentley (um grande newtonianao), questiona Newton porque as estrelas eram estáticas, ele respondia que, “estas são em números infinito e uniformemente distribuídas por Deus’, “o grande relojoeiro, as colocou em grande numero e a grandes distancias umas das outras para manter o equilíbrio”. Nem mesmo o sistema solar escapava da intervenção divina do ‘Deus newtoniano’


Lei Da Inércia


Newton não pretendia ter descoberto a ‘lei da inércia’, que ela já se encontrava nos Princípios Da Filosofia (1644) de Rene Descartes, mas que Newton atribuía a Galileu. Em um dos seus manuscritos ele chega a afirmar que as leis da inércia eram conhecidas de Anaxágoras, de Aristóteles e de Lucrécio.
Na época em que Kepler descobriu suas três leis, Galileu ainda estudava as leis do movimento, as questões de ambos se resumiam apenas no que faz os planetas girarem. Para a Igreja Católica a Ordem estabelecida imperava conforme a vontade divina. Galileu que não concordava com essa explicação simplória, descobriu um feito notável: se nada tocar um corpo em movimento, ele assim continuará, para sempre, em linha reta e com velocidade constante. Sobre essa base Newton construí a lei da inércia.
Isso contrariava os seguidores de Aristóteles que acreditavam que o repouso é o estado natural de um corpo e o ‘parar naturalmente’ acontecera a qualquer momento. Newton ressaltara a importância do termo ‘ausência de forças’, que se explica pela a existência de forças resultantes que atual sobre um corpo, como se não existissem, já que mutuamente, elas se anulam. Em resumo a ‘lei da inercia’ enfatiza que um objeto em repouso permanece em repouso tanto, quanto um objeto em movimento permanece em movimento retilíneo e com velocidade constante.


A Lei Do Quadrado A Distância


Em 24 de novembro de 1679 (data inglesa), Robert Hooke (1626-1703), que nesse meio tempo se tonará o secretário da Royal Society, escreve uma carta cordial a Newton convidando-o a comentar algumas de suas hipóteses. Em especial, propõe que analise o movimento dos planetas, supondo que resulta de um movimento inercial em linha reta, dirigido segundo uma tangente, e de uma componente centrípeta (um movimento de atração em direção ao Sol). Chega a sugerir que a atração centrípeta varia no inverso do quadrado a distância entre o planeta e o Sol. Já havia muitos anos que Hooke considerava essa hipótese – a de uma força de gravidade centrípeta tanto mais intensa quanto menor for a distância (Kepler diz que quanto mais afastados os planetas do Sol, menor é a força) -, como provam duas conferencias na Royal Society em 1666 e 1670.

Em resposta de novembro, Newton confessa “não ter ouvido falar muita coisa’ a respeito das hipóteses de Hooke sobre a “explicação do movimento dos planetas pela a composição de um movimento direto tangente à curva e de um movimento atrativo em direção ao Sol”. Para ele, que ainda tem a noção enganosa de força centrifuga, a ideia é inovadora, ele a usa para determinar a trajetória de um objeto em queda livre na Terra que gira em torno do seu próprio eixo (seria um meio de provar experimentalmente essa rotação). E em 9 de dezembro, Hooke afirma que a trajetória seria uma elipse, e considera o problema um caso particular do problema geral dos “movimentos circulares devidos a composição de um movimento direto e de um movimento de atração em direção ao centro”

Em resposta de 13 de dezembro, Newton responde parcialmente. Em seis de janeiro (1680), Hooke volta à carga e torna a discussão a hipótese de uma atração central inversamente proporcional ao quadrado da distância. Fica sem resposta, em 17 de janeiro, tenta novamente. Hooke incitava Newton a determinar a trajetória descrita por um objeto submetido a uma força central atrativa e variando no inverso do quadrado à distância. Newton silencia, encerra o diálogo com Hooke. Mas continua a refletir sobre o problema formulado por Hooke, calado como uma pedra.
Newton comunicara os resultados de suas pesquisas em 1684, por meio de um manuscrito De motu Corporum In Gyrum (os Principia), 
Hooke soube do manuscrito, e dos seus desdobramentos, e que seria publicado sobre a ágide da Royal Society, ele pensa merecer um agradecimento de   Newton, coisa que Newton sempre negará. Newton admitia que a correspondência com Hooke o leva a refletir sobre o assunto, que sua dívida não passava disso, no que tange a ‘lei do quadrado a distância’, insistiu:
“Afirmo que foi inspirada pelo o teorema de Kepler há uns vinte anos atrás”, escreveu a Harlley em 14 de julho de 1686.  Outrora, em 1684, o próprio Harlley,  pessoalmente,  apresentou ‘a lei do quadrado a distância’ a Newton, a pedido de Hooke e do matemático Christopher Wren. Mas o silencio de Harlley, não foi a favor de Hooke. Newton já era rei (ou ditador?) da Royal Society. Aqui quem decidiu: a ciência ou a política?
É através de Hooke que Newton se libertará do paradigma cartesiano do movimento dos planetas. Em 1679, Newton defendia hipóteses inscritas no quadro da interpretação magnética, os planetas se deslocavam num espaço vazio, que não oferece nenhuma resistência, submetidos a uma força dirigida para o Sol. Até então, Newton concebia o movimento dos planetas em termos mecanicistas: a revolução em torno do Sol geraria uma força centrifuga (para Hooke centrípeta) compensada por uma força dirigida para o Sol. Esta seria devida há um substrato interplanetário que, por um fenômeno de choque com os planetas, os impeliria rumo ao Sol. Assim, Hooke fez com que Newton descortinasse um novo horizonte.

Ameaçado pelas reinvindicações de Hooke, Newton se pôs a procurar em seus escritos de antes de 1679, algum indicio da lei do ‘quadrado a distância’. Como não conseguiu, afirmou que uma coisa é ter um modelo qualitativo, outra é matematizá-lo.

Dizer que há um abismo entre um valor qualitativo (teoria-ideia), e um valor quantitativo (matemático) é um erro advindo da falta da lógica, pois, uma boa ideia é a base de tudo, sem uma boa ideia o pesquisador, o matemático, fica ali olhando para a folha em branco em cima de sua mesa de trabalho, e continuará em branco, se a ideia não iluminar sua mente: sem a ideia o castelo não se ergue.

Quantos conceitos, influências, derivaram dos pequenos e profundos textos dos pré-socráticos, Heráclito influenciara a dialética de Nietzsche, do átomo de Leucipo surgira a ‘era atômica’, e também a humilhação que Luidwig Boltzmann (1844-), sofreu quando em uma palestra afirmava que o átomo de Leucipo existia, e o grande cientista Ernst Mach levanta-se da plateia, e diz que, “não acredito em átomos” (um pouco depois Bolltzmann que sofria de depressão se suicida). Ernst estava errado.
Mas pesquisas recentes do físico americano Michael Nauenberg, baseadas num manuscrito inédito de Hooke, mostram que ele usava uma construção gráfica para avaliar, de forma aproximada, a trajetória de um corpo submetido a uma força central. Para Nauenberg, o secretário da Royal Society, dispunha de um numero de ferramentas matemática, ao contrário do que alegava Newton.
Hooke também funda a microbiologia, com um belíssimo livro do mesmo nome: ao invés de mirar o telescópico para o céu, ele o mira para a terra, e descobre o fantástico mundo do pequeno, como por exemplo, os detalhes do desenho de uma mosca ‘artisticamente’, gravado no seu livro ‘Microbiologia’.


Binômio De Newton

(n/k)= n!
------------
K! (n-k)!


Esta formula muitas vezes atribuída a Blaise Pascal, que foi responsável pela a elaboração do Triangulo de Pascal, descrito no século XVII. No entanto, ela pode ter sido descoberta, segundo alguns indícios, tanto pelo o matemático persa Omar Khayyán quanto pelo o matemático chinês Yang Hui, em pleno século XVIII.

Orbitas Circulares


Em 1673, o holandês Christian Huygens (1629-1695) mencionou as orbitas circulares, independentemente, num estudo terminado em 1665, e que foi retomado em 1687, nos Principia, Newton também descreveu a aceleração centrípeta ou em orbitas circulares. Assim os planetas efetuam em torno do Sol um movimento circular uniforme. Essa constatação não corresponde à realidade, mas as orbitas elípticas dos planetas tem têm uma excentricidade tão pequena que são quase circulares.
Somente em 1680 que Newton, utilizando a formula do ‘quadrado a distância’ de Hooke, refutara a teoria cartesiana do movimento circular.


Força Instantânea Entre Corpos E No Vazio


Huygens foi entre outros efeitos, foi o primeiro a observar os anéis de Saturno. Huygens foi muito mais complexo do que Galileu em seus Discursos (1638), e ergue a ponte matemática para Newton (seu admirador) atravessar com o seu Principia, ao ponto de aconselhar Bentley, antes de ler os Principia, ler Huygens. Mas o que dirá Huygens a respeito da física newtoniana:

‘Não conseguir compreender como o senhor Newton pôde consagrar uma matemática tão boa a uma hipótese física tão absurda’

A qual hipótese física ele se refere? A que afirmar que duas massas se atraem a distância, instantaneamente através do vazio.

A opinião de Huygens sobre Newton dividia-se entre o matemático e o ceticismo pelo o físico. Porque afirmar que dois corpos se atraem a distância, instantaneamente através do vácuo parecia muito um retorno a qualidades ocultas da filosofia aristotélicas, contra a qual os mecanicistas haviam se reunido. Newton levara a sério tais objeções. Em certo sentido ele até concorda. Em carta a Bentley, ele escreve em 1693:
‘Que a gravidade deva ser inata, inerente e essencial à matéria, que um corpo possa agir a distância e através do vazio sem a medição de outra coisa__é um absurdo tão grande que não consigo acreditar que um espirito filosófico possa jamais aderir a uma opinião semelhante. A gravidade deve ser causada por um agente que atua de maneira constante segundas determinadas leis, mas que se esse agente é material ou imaterial, eu deixo essa conclusão aos meus eleitores’.
A prudência e o dogmatismo newtoniano não o permitiram avançar nessa questão, e assim ficou. As reservas de Huygens concernentes a gravitação newtoniana era compartilhada pelos os sábios do continente europeu.


Sobre As Marés


 Era ‘senso comum’, na época de Newton, que a Lua exercia força sobre a massa d´água. Porém, Francis Bacon, antes de Newton, por exemplo, não aceitara essa explicação, por parecer que tem uma conotação ‘mágica’, derivada de ‘forças ocultas’, o mesmo ocorrerá com a ideia de ‘Vis Vida’ de Leibniz, que dizia que os corpos possuem uma energia interior (mais adiante veremos essa parte). Mas, Newton, dará um grande impulso sobre os fenômenos das marés.


Sobre A Luz


Huygens defendia o modelo ondulatório da luz, Newton o seu modelo corpuscular da luz. O conceito de corpúsculo ou de partícula, é completamente diferente do conceito de onda; uma partícula transporta matéria uma onda não, uma partícula pode se locomover no vácuo, uma onda precisa de um meio para se propagar (era o que se pensava na época).
O modelo corpuscular de Newton prevaleceu sobre o modelo ondulatório de Huygens porque, além de sua explicação das cores ser mais coerente, sua fama pesou muito sobre o ‘melhor’ modelo. Mas como derrubar um mito nunca foi fácil, aceitar um trabalho contrário ao do Newton foi um trabalho bastante árduo enfrentado por alguns cientistas tendo à frente Thomas Young (1773-1829), Augunstin Fresnel (1788-1827), François Arago (1786-1853).
 Somente em 1862, ocorreu o sepultamento da teoria corpuscular da luz. Nessa época, Leon Foucault realizou um experimento para verificar a velocidade da luz na água: o resultado mostrou que na água, a velocidade da luz era menor do que no ar, contrariando totalmente as previsões do grande Newton, que dizia que a velocidade da luz aumenta quando passa de um meio menos denso para um mais denso.
Um pouco antes Michael Faraday (1791-1862) cientista dedicado a experimentação, também demostrou que um campo magnético poderia inverter os planos de polarização da luz (efeito Faraday), e alertou James Clerk Maxwell (1831-1879) sobre a relação entre ela e os fenômenos eletromagnéticos. A grande novidade do trabalho de Maxwell foi à demonstração que a luz era uma onda eletromagnética e como tal, estaria sujeita aos fenômenos de reflexão e refração entre outros.
Maxwell aproveitando-se dos trabalhos de Fresnel chegou a certas equações que expressam o comportamento de uma corrente elétrica e de seu campo magnético associado, tal quais as determinadas para expressar o comportamento ondulatório da luz. Em 1864, ele conclui:
‘Luz e magnetismo são resultados de uma mesma substancia__a luz é um distúrbio eletromagnético propagado através do campo de acordo com as leis do eletromagnetismo’

A grande novidade do trabalho de Maxwell foi a demonstração que a luz era uma onda eletromagnética e que como tal, a luz estaria sujeita aos fenômenos de reflexão e refração, entre outros.

Henrich Hertz (1857-1894) realizou a comprovação experimental da teoria, com a ajuda de um oscilador constituído de quatro esferas metálicas unidas duas a duas por uma haste ligada aos terminais de uma bobina. Dessa forma, ele conseguiu produzir ondas eletromagnéticas para provar que elas possuíam a mesma velocidade da luz e podiam sofrer reflexão, refração, polarização, difração e interferência. Com a continuação do experimento, Hertz também descobriu que poderia produzir outros tipos de ondas, como as de rádio e as micro-ondas. Além de suas contribuições serem crucial para a compreensão dos trabalhos de Maxwell, ela inaugura a era do eletromagnetismo, que representa um grande avanço tecnológico e socioeconômico.
Dentro desse processo experimental Hertz também percebeu que faíscas no transmissor aumentavam a sensibilidade do detector. Com sua morte prematura, o auxiliar Philip Lenard (1862-1947) identificou a incidência de radiação ultravioleta juntamente com as faíscas. Em seguida, ele montou um experimento para verificar o experimento e percebeu antes mesmo da descoberta do elétron, que a luz conseguiu arrancar cargas elétricas de uma placa emissora. Finalmente, Lenard conclui que as cargas elétricas possuíam velocidades iniciais finitas, mesmo num campo nulo e não dependem da temperatura; a intensidade da luz não influi na velocidade das cargas, mas sim na sua frequência; e que o número de cargas emitidas depende da intensidade da luz. A partir de então, ficou inviável explicar o fenômeno a partir da teoria ondulatória da luz, principalmente ao que se refere à relação entre frequência da luz e a velocidade das cargas.


Um Gigante Se Levanta


O ataque mais bem fundamentado contra o Newtonismo será orquestrado por aquele que é considerado o ‘ultimo sábio universal’, Leibniz. Ele se opunha a Newton, defendendo ideias contrarias a lei da dinâmica, o movimento dos planetas, os conceitos de espaço e tempo absolutos, a relação de Deus e a natureza, a existência do vazio. Mas foi na matemática que ‘a floresta pegou fogo’, houve uma polêmica e violenta disputa sobre a paternidade do cálculo infinitesimal, e os discípulos de ambos, ‘tomaram suas armas’.
Leibniz havia se interessado, é verdade pela a ‘arte combinatória’, antecipando em determinados aspectos, a lógica formal de hoje, mas seu conhecimento da geometria, da álgebra e da ‘nova análise’ é insuficiente. Huygens fara a iniciação de Leibniz nessas maravilhas. Leibniz então mergulha em estudos intensos, dando mais atenção as obras de Descartes, Torricelli, Roberval, Pascal (outro filosofo matemático), Wallis, Barrow. Suplantando o seu próprio mestre e outros sábios, e chega a fórmula do cálculo diferencial integral.

O Cálculo

O cálculo apresenta diferenças do ponto de vista dos conceitos quanto das anotações (representações por símbolos e caracteres). Entretanto há grandes semelhanças, por exemplo, se Newton fala de momento x ou de quantidades fluentes, Leibniz fala, por sua vez, de diferenciais dx de grandezas. Leibniz também dispõe de uma regra de eliminação de diferenciais (x- +dx=x). Como Newton ele usa frequentemente as serie infinitas.
Finalmente, Leibniz formula igualmente um teorema fundamental do cálculo infinitesimal e compreende que essas classes inteiras de problemas podem ser resumir à integração ou à diferenciação. Esses pontos de similaridade, justamente, motivaram a acusação de plagio por parte de Newton.
Enquanto Newton ‘a critério dos antigos, oculta, dissimular seus estudos. Leibniz é generoso em comunicar seus descobrimentos. Leibniz publica, a partir de 1684, na revista cientifica Acta Erudinorum, os princípios e a aplicação do cálculo diferencial integral. Do método newtoniano das flexões, em contra partida nenhuma linha ainda havia sido divulgada publicamente.
A história da matemática não são apenas teoremas, mas também a história dos egos.
Enquanto Newton é nostálgico dos métodos dos geômetras da antiguidade clássica, Leibniz é um defensor convicto da nova matemática, que encara com muito otimismo; na sua opinião o cálculo que ele havia finalizado constitui uma superação com relação a matemática clássica, qual Newton admira. De resto ele externa grande admiração pelo o método newtoniano das primeiras as últimas razoes, mas sua opinião é ‘avante’. Assim, Leibniz afirma com orgulho, em carta a Huygens. Em 1691:
‘__o que há de melhor e de mais prático em meu novo cálculo, é que ele apresenta verdades por meio de uma espécie de analise – que muitas vezes só é bem sucedida por acaso -, e com relação a Arquimedes ele nos apresenta todas as vantagens que Viéte e Descartes haviam nos oferecido com relação a Apolônio (de Perga)’
Leibniz insiste que a nova analise não exige nenhum esforço de imaginação, e caminha como que por encanto.
Mas Leibniz é acusado de plagio, que ele havia tido acesso aos manuscritos de Newton, em suas visitas a Londres, e também pelas as cartas endereçadas a ele por Newton e, 1676. A acusação foi aceita pela Royal Society, qual Newton comandava com autoritarismo. O julgamento foi desfavorável a Leibniz, e publicado em 1715. Uma versão anônima do Commercium, é publicada em 1715, no Philosophical Transactions, ela confirma o veredicto que a comissão teria chegado. Foi redigida por Newton, que fala de si próprio na terceira pessoa.
Daí em diante ‘ataques baixos’, acusações, ofensas foram deflagradas entre Leibniz, Newton e seus seguidores.
Um ponto em que os leibnizianos observaram, é que se Newton já havia descoberto o cálculo infinitesimal em 1684, por que ele não o utilizou nos Principia? E que o ‘Principia’ contém erros que Newton não teria cometido se ele dominasse o cálculo. Em 1710, Jean Bernoulli, observa que, nos Principia, falta solução para os problemas das forças centrais. Newton se justifica através de duas razões, a ausência das flexões nos Principia, a primeira diz respeito ao leitor que ele que ele pretende abordar, a segunda é a amplitude e a complexidade dos problemas derivados de sua cosmologia.
Se os ‘filósofos naturais’ de 1687, estão bem impregnados de geometria, os matemáticos leibnizianos consideram o estilo geométrico obscuro.
O método geométrico newtoniano com todos os seus defeitos e lites era o único disponível: nos perguntamos porque Newton e seus discípulos lidavam com o problema das marés ou do movimento da Lua por meio da Geometria em vez de fazê-lo por meio do cálculo infinitesimal, equivale a nos perguntar por que Kant viajava de coche, em vez de avião.
Porém, como já dito, Leibniz pretende romper com a matemática clássica, e seu cálculo possui essa perspectiva certamente. Através de seus caracteres e símbolos, traz a beleza para a matemática, e as equações como a do eletromagnetismo de Maxwell é exemplo de arte aplicada à matemática, dá até para se fazer um quadro com ela, decorar a sala de estar, ou fazer uma bela tatuagem.
Os cálculos possuem semelhanças, mas também diferenças; e se a ciência busca através de um mecanismo simples, explicar o complexo é isso o que oferece o cálculo do alemão Leibniz, mas o do inglês Newton foi o que ficou. Por que?


Espaço – Tempo Absolutos


Para Galileu espaço e tempo são relativos às convenções humanas, como propôs em seus Discursos, tentado explicar que a Terra girava em torno do Sol e sobre o seu próprio eixo, não o contrário como se acredita na época, tanto pelos os pesquisadores como Ptolomeu, como pela a Igreja.
Para Newton tempo e espaço não são produtos das convenções humanas, mas o meio que se dá a interação divina. Daí a de conferir a esses dois conceitos um caráter absoluto que transcenda a relatividade dos processos de medição. A noção de ‘espaço-tempo absoluto’ deixou muitos contemporâneos de Newton céticos, entre os quais Huygens, Leibniz e George Berkeley. Com efeito, escreve Leibniz:


‘Se consideramos mil corpos, penso que os fenômenos não podem nos fornece um meio infalível para determinar dentre eles, quais os que estão em movimento e qual é a natureza deste, e aqueles que, tomados separadamente, podem ser considerados como em repouso’


Para Leibniz, não existe um sistema de referência privilegiado: as medidas do tempo, do espaço e do movimento são relativas ao observador, à nossa escolha. No entanto as críticas mais profundas dos conceitos de espaço e tempo absolutos newtonianos seriam formuladas pelo o físico e filosofo austríaco Ernst Mach, no final do século XIX, Henry Poincore, Lorentz. Críticos que influenciaram grandemente Einstein a finalizar os conceitos da relatividade que, caducaram de vez os conceitos de espaço e tempo absolutos newtonianos.


Madame Emille du Chátelet Encara Newton


Emille (1706-1748) foi quem traduziu ‘os Principia’ para o idioma francês que hipnotizou Voltaire, aos vinte três anos de idade ela teve aulas avançadas de matemática, com especialidade em Newton. Também ficou conhecida por ser amiga e amante do filosofo Voltaire, outro obcecado por Newton, audaciosa criou uma academia para rivalizar com a Royal Society de Londres, desenvolvendo suas próprias ideias. Deixando perplexos seus mentores, e enlouquecendo Voltaire, que a amava e a admirava como pensadora, mas que, para seu desespero, ‘Ousava’ desafiar o ‘Todo Poderoso’ Newton. Afirmando que havia falhas no pensamento do Sir Isaac Newton.
Newton afirmava que a energia de um objeto, a força com a qual ele colidia com outro objeto, poderia muito bem ser justificada por sua massa vezes a sua aceleração.
Em correspondência com filósofos naturais da Alemanha, Emille aprende outra visão, a de Leibniz, que propunha que objetos em movimento tinham uma espécie de ‘espirito interior’, que ele chamava de ‘Vis Vida’, força viva em latim. Muitos subestimavam suas ideais, mas Leibniz estava convencido de que a energia de um objeto era composta de sua massa vezes a sua velocidade ao quadrado.

Levar alguma coisa ao quadrado era procedimento comum da época: se você diz que um jardim é quatro ao quadrado, quer dizer que pode ser construído por quatro canteiros ao longo de quadro e ao longo do outro quadro, de forma que o número total de canteiros é 4 X 4= 16, se o jardim é oito ao quadrado, então oito ao quadrado será sessenta e quatro (64). Ele terá sessenta e quatro canteiros. Essa construção dos quadrados, é uma coisa que encontramos o tempo todo na natureza.
Para Voltaire era um absurdo Emille aceitar a ideia de Leibniz, a de atribui a um abjeto uma força vaga e imensurável como a vis vida, pois isso configurava-se um retorno ao passado, ao oculto. Esse era um pensamento da época oriundo de Francis Bacon, que Newton e seus contemporâneos adotaram, e que influenciara Voltaire, não se podia falar em ‘forças invisíveis’, e é por isso é que Newton não fará teorias para explicar ‘a força instantânea entre os corpos’, deixará isso para ‘os seus eleitores’.
A valente Emille se opunha, indagando a Voltaire que, ‘Quando um movimento começa você diz que é verdade que uma força é produzida, que não existe até agora, e Leibniz pergunta: ‘De onde vem essa força?’
Apesar de apoio intenso a Newton, ela não se dogmatiza, não abre mão do que acredita. No fim, ela através de um cientista holandês chamado Gravissan faz um experimento para provar que tinha razão. Usando as formulas de Newton, o cientista criou um equipamento, onde ao deixar cair uma segunda bola de aço na argila, de uma altura maior, calculada exatamente para dobrar a velocidade da bola com o impacto: Newton nos diz que ao dobrar a velocidade da bola, dobramos a distância que ela percorre na argila, Leibniz nos pede para elevar a velocidade ao quadrado. A segunda bola percorreu não duas vezes como propôs Newton, mais quatro vezes, como propunha Leibniz. O que o cético Voltaire, exclamaria ironicamente, que não há motivo no mundo para atribuir forças ocultas as bolas de Emille. Emille certamente riria.

Mas Leibniz é que tem razão, é a maneira de expressar a energia de um objeto em movimento, se um carro está a 30 km’s, é preciso de certa distância para parar, se estiver três vezes mais rápido, a 90 km’s, precisa de três vezes mais distancia para parar. Se vai a 90 km’s por hora, não será preciso três vezes mais distancia para parar, mais nove vezes mais distancia para parar.
A convicção de Emille de que a energia de um objeto é uma função do quadrado de sua velocidade, deu margem a um debate feroz após seu falecimento, e cem anos para ser aceita, a tempo dessa brilhante descoberta, finalmente, reunir a energia com a massa e com a luz, na Teoria da Relatividade.
A grande Emille engravidara do seu quarto filho, aos 42 anos, o que era muito perigoso para época, seis dias após o parto, ele sofre uma embolia e falece. Deixando um coração inflado de saudades dela, o do sarcástico Voltaire, e marcando seu nome para sempre na ‘história da ciência dos homens’: a mulher que encarou Newton.


Leibniz E O Futuro Além do Futuro


Uma das maiores facetas de Leibniz foi o código binário (01. zero-um), onde ele conseguia resolver todas as equações utilizando-se apenas do 0 e do 1. O código binário que foi utilizado no projeto enigma por Allan Turing para decifrar códigos secretos nazistas na Segunda Grande Guerra, e que será a base do computador e do mundo virtual de um modo geral, por tudo que você ver nesses sistemas, uma foto, um vídeo, é formado pelo o código binário. Lembrando que Leibniz realmente acreditou que poderia construir uma máquina que resolveria ‘todos os problemas humanos’: o computador.

No funeral de Leibniz, somente seus parentes próximos e alguns amigos fieis assistiram seu enterro. O funeral de Newton, diz Voltaire, equivale pela a pompa e pelas as honras ao de um rei. 

Mas o que Voltaire jamais saberia, que por trás daquele homem que ele ‘idolatrava’, ‘o ápice da ciência’, da razão contra o ‘obscurantismo’, ocultava-se o ‘teólogo do apocalipse’, o ‘grande alquimista’, que pelas sombras do seu laboratório, representava tudo aquilo que Voltaire renegava, e que lutou bravamente contra, até o ‘último dia da sua rica e produtiva vida’.
Em meados de julho de 1936, a Sottheby`s leiloa em Londres o conteúdo de uma mala de metal cheia de manuscritos de Isaac Newton. Esses documentos tratavam essencialmente de alquimia e de teologia. Revelando ao grande público as inclinações de Newton para o hermetismo.


Primeira Lei. A Lei Da Inércia         
  
                                                                      

Todo corpo permanece em seu estado de repouso ou de movimento uniforme em linha reta, a menos que seja obrigado a mudar seu estado por forças impressas nele.
‘Os projéteis permanecem em seus movimentos enquanto não forem retardos pela a resistência do ar e impelidos para baixo pela a força da gravidade’.


Primeira Lei. A Lei Da Dinâmica – Ecks


“Para cada efeito um emaranhado de causas une-se para formá-lo, separam-se para dissolvê-lo” Ecks

Todo corpo permanece em seu estado de ‘repouso’ ou de movimentos geométricos, a menos que seja obrigado a mudar seu estado por forças do meio impressas nele, ou vice versa, igualmente, divergentes, compensatórias, oscilatórias, ...
‘Quando um projétil sai da arma, p.ex., em seu percurso adquirira quantidades de força-energia, em relação à dele mesmo que o fará ir adiante, ou de o impelir para baixo...
Ao sair da arma o projétil sai em alta temperatura que vai do quente (aqui ele adquire mais velocidade, rompe mais facilmente a resistência do ar....), morno, úmido, frio... que em tensão com o meio em sua volta – (densidade do ar, eletromagnetismo terrestre, temperatura...) o impelira para baixo pela a força da dinâmica da Gravidade.


Para A Lei Da Inércia


Tanto uma pedra grande como uma pedra pequena possuem movimento nulo, já que ambas estão em repouso (velocidade l nula). Pela a diferença de massa a pedra grande oferece mais resistência a qualquer mudança em quantidade de movimento do que a pedra pequena. É o que diz a lei da inércia.


Lei Da Dinâmica – Ecks


“Nada está em ‘repouso’, Tudo se move em múltiplos movimentos, geometrias; tudo se move em ritmo, lento, ‘estático’, acelerado...” Ecks
Tanto na realidade clássica (esta que vemos e sentimos) como na realidade infra (que não vemos e não podemos sentir) não existe o ‘repouso’, o não movimento. Se a energia é a dinâmica do universo, tudo se move, oscila, vibra, e correlaciona-se em compensações, trocas, perdas e etc. Porque o movimento é relativo no sentido de uma coisa depende das outras coisas e de seus fenômenos fisenergéticos.  
Para haver o movimento absoluto, ou a inercia absoluta de um objeto, este objeto teria que estar fora do espaço-tempo-dimensões, e como poderia este objeto estar no espaço sem espaço?

Newton ressaltara a importância do termo ‘ausência de forças’, que se explica pela a existência de forças resultantes que atual sobre um corpo, como se não existissem, já que mutuamente, elas se anulam. Em resumo a ‘lei da inercia’ enfatiza que um objeto em repouso permanece em repouso tanto, quanto um objeto em movimento permanece em movimento retilíneo e com velocidade constante.

Não há ‘ausências-anulação de forças’, mas complementariedade... de forças, pela a dinâmica (Ecks), por isso no espaço não temos ‘gravidade zero’, mas gravidade ab(soluta), as forças se unificam em um dado momento para um objeto se manter em ‘repouso’, ou em ‘velocidade constante’ (mais adiante veremos está parte).

Tanto a pedra grande como a pequena não estão em ‘estado de repouso’, tanto na realidade clássica como na realidade Infra, mas em movimento. Estão se movendo, vibrando, trocando e produzindo energia, perdendo energia. Temos que entender que as pedras estão sobre a placa tectônica, que também se move, seu solo se move, treme, vibra, produz energia, que está sobre um núcleo dinâmico, a atmosfera dinâmica e seus fenômenos atmosféricos (massa de ar, processos térmicos como o calor, frequências...) ...e assim sucessivamente.
Isso faz com que as paredes da tua casa não estejam ‘paradas’, o prédio, o monumento na praça, a caneta em cima da mesa, ou pela a lei da inércia, ‘em repouso’, e se é um ‘repouso’, é um ‘repouso perturbado’.

Quando você olhar para uma coisa, ela está ali, ele existe, mas... quando você desvia a vista dela, ela deixa de existir, pelo menos da forma como você vê.
Imagine uma pedra sobre o encostamento de uma grande avenida urbana. Onde trafegam por ali centenas de carros leves grandes e pequenos, de passeios as grandes carretas. E centenas e centenas de pedestres. Você olhar para ela, La esta ela, ‘parada’, em ‘repouso’. Mas toda a energia daquele ambiente está agindo sobre ela, agitando-a, vibrando, modificando-a. Agora aplique esse exemplo, as pessoas, ambiente carros, parada de ônibus, poste e etc.
Este e o mundo em que vivemos é o mundo da força, da Energia, o Mundo oscilatório, vibracional, frequêncial... Em que vivemos
Esses fenômenos produzem a música pitagórica, que ora afina, ora desafina. E a orquestra cósmica não para de tocar. Porque se ela pará de tocar, o baile acabar (Pelo Menos para nós).


II Lei de Newton


A mudança do movimento e proporcional a força motriz impressa, e se faz segundo a linha reta pela a qual se imprimi essa força.

II Lei Da Dinâmica - Ecks  

A mudança do movimento pode ser ou não proporcional a força motriz impressa, e se faz segundo percursos geométricos pelos quais se imprimiu essas forças.

IIII Lei Do Movimento

Uma ação é sempre igual e oposta à reação, isto é, as ações de dois corpos um sobre o outro são iguais e em sentidos contrários.


III Lei (Da Dinâmica) - Ecks


Uma ação pode ou não ser igual e oposta, a reação e a contração, isto é, as ações de dois corpos sobre o outro são iguais ou desiguais, em sentidos contrários, em relação à conformação, e as suas massas.



Quando uma bola de aço de dez quilos é lançada a uma velocidade constante atinge uma segunda bola de 5 quilos em ‘repouso’. No advento do impacto, o ‘tempo pará’. E a energia e transmitida da primeira para a segunda bola, e esta adquirira quantidade de energia e velocidade. Porque a bola em ‘repouso’ também possui energia, e é por isso que ela oferece resistência.

Quando as bolas se chocam é transmitida mais energia da primeira bola para a segunda por causa de suas diferenças de massas, do que o seu inverso. Mas quando a força-energia motriz da primeira bola e transmitida para a segunda, não será mais a mesma, haverá perda energética entre ambas e o universo ao redor.  Diferença essa que pode ser recompensada no ínterim do seu percurso. Que pode fazer sua velocidade ceder em milésimos de nano segundos, e acelerar na sequência, e depois parar.
Assim como ocorre com um projétil quando este passa pelas as saliências do cano do revólver, que ganhando impulso na saída do cano.


A Gravidade – Ecks


A Gravidade é um emaranhado de todos esses fenômenos descritos nas quatro leis conhecidas (até então): a gravitacional, a eletromagnética, a nuclear forte, a nuclear fraca, ‘Tanto na Terra como no Céu’, ‘Do átomo a matéria à energia’ em suas próprias magnitudes, é o que faz uma Uva cair do galho ao chão, como a Lua orbitar, ‘deslizar’ sobre a Terra, ou como diria Newton ‘cair sobre a Terra’. Para existir nossa atual Gravidade que faz com que a Terra tenha seu movimento de rotação e translação em torno do Sol; todas essas forças se ‘unem’, todas essas forças são polaridades de uma força só, a força da Gravidade, derivadas de suas Três Leis Da Dinâmica (Ecks).


Matéria-Energia – Ecks

Newton afirma que matéria atrai matéria, mas matéria não atrai matéria, energia atrai... energia. A energia contida no espaço e nos corpos determinará seus fenômenos, o porquê de algo cair, subir, flutuar, porque um gato se move, um planeta se deslocar, se envelhece, uma estrela explode, implode...
Quando você vê um animal se alimentado, devorando outro animal, isso é o que você vê, mas o que você não vê, é que ali, energia está se alimentado, devorando energia, energias em transformações.


A Força Instantânea De Newton


Um corpo opera através do outro instantaneamente através do outro através do vácuo. Algo que Issac Newton jamais explicou, ele apenas matematizou a gravidade, jamais explicou o que era a gravidade, e como um corpo pode agir sobre o outro instantaneamente.


A Teoria X - de Edson Ecks, nega o vácuo e o vazio, pois há sempre algo além do além... Peguemos por exemplo o sistema solar, em sua formação as forças que agiam entre o Sol e os Planetas. O exemplo, foram se estabelecendo, definindo suas orbitas e velocidades de rotação e translação, até atingirem a atual conjectura. Quando estabelecidas, as trocas... dessas forças, não se fizeram ou fazem-se instantaneamente, como presumira Issac Newton, mas através de ‘Pacotes Panticos’ (materiais-energéticos) que formaram o Universo, transportados através da Gravidade (o Todo em ação).

Não existe o instantâneo (por causa da realidade Infra), as trocas, perdas e etc. que ocorrem entre os astros, partículas..., são como rios de ‘mãos duplas’, um leva o outro traz, mesmo que em escalas ínfimas de espaço-tempo-dimensões. O ‘instantâneo’, significa o não movimento, a não troca. O que chamamos de ‘gravidade’ podemos simplesmente chamar de: Gravidade (Com G maiúsculo, ou Pantividade). É pela a Gravidade que algo cai, sobe, expande, comprime, voa, flutua, afundar, emerge, explode, implode. Porque tudo funciona da seguinte forma: Tudo ao mesmo tempo agora, uma coisa de cada vez:
No espaço não temos gravidade zero, mas Gravidade ‘absoluta’, onde todas as coisas se ‘igualam’. Na gravidade zero todas as coisas cairiam umas sobre as outras.
Para o planeta manter nosso atual movimento de rotação e de translação. Várias causas agem para manter esses dois efeitos, inclui-se, por exemplo, as rajadas solares que chegam a até a Terra de oito em oito minutos. Hipoteticamente se o Sol aumentasse sua intensidade para, 7 em 7 minutos, 6 em 6 minutos, 5 em 5 minutos... Aumentaria gradativamente a incidência de calor sobre o planeta, o ciclo da água, entraria em colapso, o núcleo da Terra aumentaria muito sua temperatura, que prejudicaria a térmica em suas placas tectônicas. E afetaria o campo magnético da Terra, e seus movimentos de rotação e translação seriam transformados em outras mediadas (E aumentando esses fenômenos, ela até sairia de orbita do sistema solar).
E nesse novo clima haveria uma nova ‘Seleção biométrica’, ‘extinguindo’ os animais de sangue quente, os mamíferos, principalmente aqueles que dependem de muita gordura, como os ursos polares. Assim, como a ‘Seleção biométrica’, no passado, eliminou os animais de grandes portes e de sangue frio: os dinossauros (as plantas gigantes...), o novo clima já não lhes era mais favorável, era chegada a hora para os mamíferos, e neste exemplo acima, os mamíferos é que seriam convidados a se retirarem do ‘baile da vida’. A Seleção Biométrica (tanto como Conservação, como extinção), é derivada das Três Leis Da Dinâmica (Ecks).

Os dinossauros foram extintos pela seleção pantica das eras: viviam numa era em que fauna e flora, clima... eram propicias aos animais, plantas... biometricamente maiores, principalmente os terrestres (e hoje ocorre o inverso), a atmosfera não possuía totalmente a formação gasosa... da atual. À medida que a atmosfera transformava-se, fauna, flora... Modificavam-se, os dinossauros não se adaptaram, ou não tiveram tempo para estes novos processos foram extintos. Edson Ecks


CONSTANTE G - DE NEWTON



O cientista britânico Henry Cavendish “provavelmente pronunciou menos palavras ao longo de sua vida que qualquer homem que tenha vivido durante oitenta anos, incluindo os monges trapistas”, conforme descreveu com graça seu contemporâneo lorde Brougham. Cavendish, nascido em 1731 e falecido em 1810, foi efetivamente introvertido e solitário. Era “o mais rico de todos os sábios, e o mais sábio de todos os ricos”, nas palavras do astrônomo francês Jean-Baptiste Biot. Mas, em silêncio e encerrado em sua mansão, descobriu o hidrogênio e a composição da água. E, em 1798, concebeu um dos experimentos mais audazes da história da humanidade. Agora, uma equipe de cientistas chineses subiu nos seus ombros para redefinir, com uma precisão inédita, uma das constantes mais importantes para descrever o nosso universo, junto com a velocidade da luz.
Cavendish já tinha quase 70 anos e havia se proposto a tarefa de averiguar a densidade do planeta Terra. Para isso, necessitava da constante de gravitação universal (G), postulada por Newton um século antes. O ancião, sempre calado, construiu uma espécie de balança no porão da sua casa na zona sul de Londres: duas esferas pequenas, fixadas aos extremos de uma varinha horizontal suspensa do teto por uma fina fibra. Ao aproximar duas esferas de chumbo de maior tamanho, de cerca de 160 quilos cada uma, a força de atração que as outras duas bolinhas sofriam fazia a varinha girar, e tudo isso de maneira perceptível graças a um jogo de espelhos, luzes e telescópios instalado por Cavendish.
Em seu livro Princípios Matemáticos da Filosofia Natural, publicado em 1686. Newton formulara que a interação gravitacional entre dois corpos poderia ser expressa como uma força diretamente proporcional ao produto das massas desses corpos, e inversamente proporcional ao quadrado da distância que os separa. Empregando essa fórmula e as observações em seu porão, o tímido Cavendish chegou à conclusão de que a densidade média da Terra era 5,48 vezes maior que a da água. E não errou por muito: hoje se calcula que a cifra correta é 5,51.
A busca pela maior exatidão possível não é um capricho. Os geofísicos usam a constante G para estudar a estrutura e a composição da Terra. E também é essencial em campos como a física de partículas e a cosmologia, a parte da astronomia que estuda a origem e o futuro do universo.

“O verdadeiro valor de G ainda é continua desconhecido”, admite, no entanto, o professor Luo. A dificuldade de medir a constante é diabólica. A força gravitacional exercida pelo Sol é tão grande que impede que o planeta Terra escape pelo espaço. No entanto, em laboratório, a força gravitacional entre dois objetos de um quilograma separados por um metro equivale ao peso de um punhado de bactérias. É uma força “extremamente fraca”, nas palavras de Luo.

O Comitê de Informação para Ciência e Tecnologia (CODATA), com sede em Paris, é o organismo internacional de referência para essa constante. Em 2014, seus especialistas adotaram 14 valores de G determinados nas últimas quatro décadas em diferentes laboratórios de todo o mundo. “A diferença relativa entre o maior e o menor valor de G está próxima de 0,055%. Essa situação não nos permite obter um valor G com alta precisão”, lamenta Luo.
Apesar da precisão de seus resultados, os cientistas chineses obtiveram dois dados diferentes com dois aparelhos ligeiramente diferentes e independentes. A equipe não sabe explicar essa discrepância. “Há algo que ainda não sabemos e precisamos de mais pesquisas”, diz Luo. Ou talvez precisemos de outro Henry Cavendish.

O ESCÂNDALO DO QUILOGRAMA

“É um escândalo que a unidade de massa ainda seja um objeto físico”, lamentou um mês atrás William Daniel Phillips, prêmio Nobel de Física, em uma conferência internacional de física atômica realizada em Barcelona. Ele se referia ao quilograma, cujo protótipo de referência é um cilindro de platina-irídio —depositado em um porão de Paris— que define a unidade de massa desde o século XIX no chamado sistema internacional.

Já em 1899, o físico alemão Max Planck sugeriu acabar com essa arbitrariedade e propôs criar um sistema de unidades baseado nas constantes da natureza, alheias às construções humanas. “Ele propôs usar a velocidade da luz, a constante de Planck e a constante de gravitação universal de Newton”, diz o físico chinês Jun Luo. “No entanto, esse sistema de unidades não é completamente competitivo em relação ao atual sistema internacional, devido a pouca precisão da constante de gravitação”, lamenta o pesquisador da Universidade de Ciência. 


IN-CONSTANTE G - DE EDSON ECKS


“Nenhuma constante é constante, nenhuma inconstante é inconstante, em todos os lugares, e indefinidamente” Ecks

A constante G de Newton (nem a Inconstância de Heráclito é inconstante: porque algumas coisas duram mais que outras) não adquire um valor absoluto de mediada em todos os lugares por causa das Três Leis Da Dinâmica (Ecks), como especifiquei acima:

“Nada está em ‘repouso’, Tudo se move em múltiplos movimentos, geometrias; tudo se move em ritmo, lento, ‘estático’, acelerado...” Ecks

Tanto na realidade clássica (esta que vemos e sentimos) como na realidade infra (que não vemos e não podemos sentir, normalmente) não existe o ‘repouso’, o não movimento. Se a energia é a dinâmica do universo, tudo se move, oscila, vibra, e correlaciona-se em compensações, trocas, perdas e etc.

“O verdadeiro valor de G ainda é continua desconhecido”, admite, no entanto, o professor Luo. A dificuldade de medir a constante é diabólica. A força gravitacional exercida pelo Sol é tão grande que impede que o planeta Terra escape pelo espaço. No entanto, em laboratório, a força gravitacional entre dois objetos de um quilograma separados por um metro equivale ao peso de um punhado de bactérias. É uma força “extremamente fraca”, nas palavras de Luo.

Apesar da precisão de seus resultados, os cientistas chineses obtiveram dois dados diferentes (da constante G) com dois aparelhos ligeiramente diferentes e independentes. A equipe não sabe explicar essa discrepância. “Há algo que ainda não sabemos e precisamos de mais pesquisas”, diz Luo. 

Aparelhos de mediação diferentes também podem causar variações nas medidas da ‘constante G’ (Ecks).

Aplicando as Três Leis Da Dinâmica (Ecks), neste exemplo acima, você entendera que, ínfimas variações, oscilações, vibrações, frequências... no ambiente micro (moléculas...) como no macro (laboratório, térmica...), geram medidas diferentes da ‘constante G’, por causa da In-Constante G, advindas dos fenômenos das Três Leis Da Dinâmica (Ecks), dos particulares para os universais.

A fusão das Três Leis Da Dinâmica (Ecks) em um determinado momento, ou em um momento crítico, como por exemplo, a implosão de uma estrela, o choque de duas galáxias... Isso pode fazer com que um mesmo elemento, como o Hélio, hidrogênio, oxigeno, possam adquirir outras propriedades, fundindo-se com outros elementos, adquirindo novas propriedades, novas informações.  O ‘mesmo’ também pode ocorrer dentro do micro, numa molécula por exemplo.

“Para cada efeito, um emaranhado de causas unem para formá-lo, separam-se para dissolvê-lo” Edson Ecks


(A base da Teoria - X foi feita em 2001, por Edson Ecks)
Academia Amazona  -  23022019










 A TEORIA X - DE EDSON ECKS, EXPLICA OS PROCESSOS HISTÓRICOS DA TEORIA DA GRAVITAÇÃO E DA RELATIVIDADE, ONDE EXPÕE SUAS PRÓPRIAS TEORIAS À PARTIR DESTAS.







Uma Breve História Da Relatividade



O princípio da relatividade de Galileu, como o próprio nome indica, foi proposto pelo matemático, astrônomo e físico italiano Galileu Galilei (15641642).  Este princípio diz: as leis da mecânica, expressas num dado referencial, serão expressas de forma idêntica em qualquer outro movimento retilíneo e uniforme em relação ao primeiro. Vida E Pensamentos – Galileu Galilei. Martin Claret

O escritor de ficção cientifica H. G. Well (1894), assim expõe um problema que mais tarde seria retomado por Einstein: o conceito de espaço-tempo.

"__pode existir um cubo instantâneo?". "__não percebo__disse  filby. Pode ter existência real que não dure por nenhum espaço-tempo?".  Filby ficou pensativo. " não ha dúvida__continuou o viajante do tempo__que  todo corpo real deve-se estender por quatro dimensões: deve ter comprimento, largura, altura e... duração (tempo)__há realmente quatro dimensões, três

A ideia do tempo como uma quarta dimensão, apesar de só ter
sido aceita no início do século XX, era, em 1704, uma noção natural para d  Lambert das quais são chamados os três planos do espaço (Euclides), e uma quarta dimensão, o tempo.



Jean le Rond d'Alembert , que assim expressou em sua enciclopdie: "Um homem de espírito, de  minhas relações, que se deve considerar a duração (tempo) como uma quarta  dimensão. Explicando a Relatividade - Ronaldo Rogério Mourão. Ediouro.


O trabalho de Poincaré no estabelecimento de fusos horários internacionais levou-o a considerar como relógios distribuídos sobre a Terra, os quais se movem a velocidade diferente em relação ao espaço absoluto (ou "éter luminoso"), poderiam ser sincronizados. Ao mesmo tempo o teórico Neerlandês Hendrik Lorentz tinha estendido a teoria de Maxwell para uma teoria do movimento de partículas carregadas ("eletros" ou "íons"), e suas interações com a radiação. Para
isto ele teve que introduzir o conceito de tempo local.





 Equivalência massa-energia – Precursores Da Fórmula E = mc2




A relação entre matéria e energia era conhecida por Issac Newton , em seu Opticks, publicado em 1704, Newton expôs sua teoria corpuscular da luz. Ele considerou a luz como feita de extremamente pequenos corpúsculos, matéria feita de corpúsculos maiores, e especulou que um tipo de transmutação alquímica existiria entre eles. “Não são o corpo rígido e a luz conversíveis um em outro, e não podem os corpos receberem muito de sua atividade de partículas de luz que entram em sua composição?

Durante o século XIX, houve várias tentativas de mostrar que eram equivalentes, seguindo as premissas do ponto de vista eletromagnético, porém elas não foram teoricamente bem-sucedidas] Os escritos de S.Tolver Preston (1875) foram interpretados como apresentação da fórmula de equivalência massa-energia.

Em 1884, o inglês John Henry Poynting enunciou o famoso teorema sobre conservação da energia do campo eletromagnético, outros cientistas tentaram rapidamente estender as leis da conservação para massa mais energia.

Um dos precursores mais plausíveis na descoberta de E = mc2 foi Fritz
Hasenöhrl, um professor de física na Universidade de Viena. Em um artigo de 1904, Hasenöhrl escreveu claramente a equação E = 3/8mc2. De onde ele tirou isso, e qual o motivo da constante de proporcionalidade estar errada?  Tephen Boughn, da Haverford College na Pensilvânia, e Tony Rothman, da Universidade de Princeton, examinaram esta questão em um artigo enviado ao servidor preprint arXiv .

O nome de Hasenöhrl tem uma certa notoriedade agora, como é comumente proclamado pelos aficionados anti-Einsteins. Sua reputação como o homem que realmente descobriu E = mc2 deve muito aos esforços da física antissemita e pró-nazista do ganhador do prêmio Nobel Philipp Lenard, que procurou separar o nome de Einstein da teoria da relatividade de modo que não fosse visto como um produto da “ciência judaica”.

No entanto, tudo isto prestou um desserviço a Hasenöhrl. Ele foi aluno e sucessor em Viena, de Ludwig Boltzmann, e foi elogiado por Erwin Schrödinger, dentre outros.” Hasenöhrl foi, provavelmente, o principal físico austríaco do seu tempo”, disse Rothman a physicsworld.com. Ele poderia ter ido muito longe se não tivesse sido morto na Primeira Guerra Mundial.

A relação entre energia e massa já estava sendo amplamente discutida ao tempo de Hasenöhrl considerando o assunto em questão. Henri Poincaré estabeleceu que a radiação eletromagnética possuía momentum e, assim, efetivamente uma massa, conforme se diz em E = mc2. O físico alemão Max Abraham argumentou que um elétron em movimento interage com seu próprio campo E0, para adquirir uma massa aparente dada por E0 = 3/4 mc2. Tudo isso foi baseado em eletrodinâmica clássica, assumindo ainda uma teoria do éter. “Hasenöhrl, Poincaré, Abraham e outros sugeriram que deveria haver uma massa inercial associado à energia eletromagnética, mesmo que eles tenham discordado na constante de proporcionalidade”, diz Boughn.

Hasenöhrl abordou o problema perguntando se um corpo negro emitindo radiação modificaria sua massa quando está se movendo em relação a um observador. Ele calculou que o movimento acrescentaria uma massa de 3/8c2 vezes a energia radiante. No ano seguinte, ele corrigiu isso para 3/4c2.

Outro ponto nada difundido sobre o famoso E=mc2 que é tão popularmente comentado e tão pouco compreendido pela população de um modo geral, é que essa equação não é uma lei geral da física, como o Prof. Dr. Roberto Martins, um dos maiores nomes da História da Física do Brasil, comenta em uma mesa redonda sobre história da ciência no ensino [referência (destaques meus):
(…) Quero dar um exemplo de ignorância histórica bastante comum. Em cursos de Estrutura da Matéria ou de Teoria da Relatividade costuma-se ensinar a “relação massa-energia de Einstein “” “– E = mc2. Por um lado, pode ser interessante mencionar que Poincaré e Hasenöhrl já haviam, antes de Einstein, chegado a essa relação, em casos especiais. Mas omitir Poincaré e Hasenöhrl 'não é grave'. O que é realmente grave é que os professores não sabem que a relação E = mc2   não é uma lei geral da Física, se a Teoria da Relatividade estiver correta!
Ela é apenas um caso particular da lei de Planck, estabelecida em 1907, segundo a qual a massa inercial maupertuisiana de um corpo (definida como momentum dividido por velocidade) é igual a sua entalpia (e Um não energia) dividida por c2. Apenas quando o termo PV (pressão vezes volume) da entalpia é desprezível, pode-se falar que E = mc2. Além disso, a relação E = mc2 não se aplica à energia potencial, por exemplo.
Quem só conhece os livros-textos e
não conhece a história da Teoria da Relatividade profundamente vai sempre cometer erros ao falar sobre essa relação massa-energia.

__Ambos, Hasenöhrl e Einstein, estavam na famosa primeira conferência de Solvay em 1911, junto com a maioria dos outros físicos ilustres da época. “Só podemos imaginar as conversas”, diz Boughn e Rothman. Foi Einstein quem
descobriu o E=mc2?.  physicsworld.com


Velocidade da luz


O primeiro a questionar essa história de que” a velocidade da luz é infinita” de que se tem notícia foi o filósofo Empédocles, no século V a.C. Menos de um século depois, Aristóteles discordaria de Empédocles e a discussão continuaria por mais de dois mil anos depois.
  Ole Rømer encontrou a chave sobre a velocidade da luz que Galileu havia procurado sem sucesso duas décadas antes, quando o rei espanhol Felipe III ofereceu uma recompensa para determinar a longitude de um navio fora da vista terrestre. Galileu propôs um método para calcular a hora, e portanto a longitude, com base nas horas dos eclipses das luas de Júpiter, mas não funcionou.
Foi uma dessas luas de Júpiter, Io, que Ole Rømer e seu colega Jean Picard observaram durante vários meses. Viram que quando a Terra estava mais longe do quinto planeta da órbita solar, os eclipses de suas luas demoravam mais a serem percebidos e vice-versa. Rømer prosseguiu a investigação e acabou entendendo que a diferença estava na velocidade da luz: esta demorava mais a chegar porque percorria uma distância maior. A medição de tempo foi essencial para fazer o anúncio oficial na Academia de Ciências de Paris.
Ole Rømer realizou a primeira estimativa quantitativa da velocidade da luz, em função de suas pesquisas concluiu que a luz demoraria 22 minutos para cruzar o diâmetro da órbita da Terra. Na atualidade, esses cálculos se aproximam dos 17 minutos.
A velocidade da luz no vácuo é geralmente denotada por c, de "constante" ou da palavra latina celeritas (que significa "rapidez"). Originalmente, era usado o símbolo V, introduzido por James Clerk Maxwell, em 1865. Em 1856, Wilhelm Eduard Weber e Rudolf Kohlraush  usaram c para uma constante, que mais tarde mostrou-se que era igual a  √2 vezes a velocidade da luz no vácuo. Em 1894, Paul Drude, redefiniu c para o seu significado moderno.

A Relatividade De Leibniz Contra O Absoluto De Newton

Em seu grande tratado “Os Princípios Matemáticos da Filosofia Natural”, publicado em 1687, Newton introduziu o conceito de “tempo absoluto”, definindo-o da seguinte maneira. “O tempo absoluto, verdadeiro e matemático, por si só e por própria natureza, flui uniformemente, sem relação com nenhuma coisa externa, e é também chamado de duração”.
Na mecânica de Newton, o tempo é absoluto e uniforme. Ou seja, ele existe independente da matéria e passa da mesma forma para qualquer observador.
Leibniz avançou uma concepção do espaço e do tempo que apresentava finalmente uma compreensão clara de como uma teoria podia, num tom aristotélico, negar ao espaço e ao tempo um tipo de existência independentemente da existência das coisas materiais comuns e dos
acontecimentos materiais

A ideia simples de Leibniz é a de que o tempo é apenas a coleção de todas estas relações temporais entre acontecimentos. Se não existissem acontecimentos, não existiriam relações, e assim, neste sentido, o tempo não teria uma existência independente dos acontecimentos que nele ocorrem. Contudo, as relações entre os acontecimentos são um componente real do mundo (nesta perspectiva exotérica). Por isso, seria também enganador dizer que o tempo não existe realmente. Se considerarmos todas as coisas do mundo num único instante de tempo, veremos as relações espaciais que ocorrem entre elas. Estão a certas distâncias umas das outras, e em certas direções umas em relação às outras. O espaço é a coleção de todas estas relações espaciais entre os objectos do mundo num certo instante. Uma vez mais não existe qualquer contentor, qualquer espaço em si à espera de ser ocupado pelos objectos.
Há apenas os objectos e as inúmeras relações espaciais que eles estabelecem entre si.

Logo, a concepção relacionista é a que devemos adotar. Alega-se também que uma visão semelhante do tempo, concebido como a família das relações temporais entre acontecimentos materiais, suprime qualquer debate sobre o “tempo em si” como uma entidade que faça parte do mundo.

Kant, por exemplo, pensava que o espaço e o tempo eram estruturas organizadoras da mente, por meio das quais dávamos às sensações um formato compreensível. O debate entre Newton e Leibniz. 1 de Abril de 2006   Filosofia da ciência critica na rede.

 A transição entre os sécs XVII e XVIII assistiu a um grande embate entre o EMPIRISMO inglês (priorizando um raciocínio mecânico na abordagem da natureza), cujos epígonos foram J. Locke e I. Newton por um lado e o pensador de difícil classificação (idealista metafísico?) GW Leibniz. Até pela enorme influência da Inglaterra e de suas Academias no mundo—aliadas aos iluministas franceses (também “embriagados” de materialismo) —e ainda pela omissão dos alemães (especialmente de Kant), a obra de Leibniz demorou um bom tempo para ser plenamente reconhecida. Se é que o foi verdadeiramente.

Deixando de lado os aspectos muito mesquinhos dos ataques ao alemão promovidos por I. Newton—especialmente quanto a quem teria desenvolvido
primeiro o cálculo infinitesimal—o fato é que, para os PRINCIPAIS focos das polêmicas, todas antecipações de LEIBNIZ têm se confirmado:

1– Relatividade tempo/espaço: 1- ESPAÇO: “…Demonstrei que o espaço não é mais do que uma ordem da existência das coisas na sua simultaneidade. Assim, a ficção de um universo material finito, que passeia todo inteiro num espaço
infinito não poderia ser admitida. É totalmente irracional e impraticável…Além de não haver espaço fora do universo material…São imaginações dos filósofos de noções incompletas que fazem do espaço uma realidade absoluta…”; TEMPO: “…como poderia existir algo do qual não existe qualquer parte…somente momentos e esses não são sequer uma parte do tempo.” (Leibniz, Correspondência com Clark)

Não há VÁCUO e a materialidade da luz: “…não há vazio ou vácuo, de modo algum, nos recipientes, pois que o vidro tem poros sutis através dos quais os raios de luz, do ímã e de outras matérias muito finas podem passar.” (idem)

Não há ÁTOMOS isolados, mas MÔNADAS: “…J. Locke julga que o vazio é necessário na matéria para que aconteça o movimento, visto que suas pequenas partes seriam duras…se a matéria fosse composta totalmente dessas partes, o movimento seria impossível, como numa sala cheia de pedrinhas caso não houvesse vácuo entre elas…Deve-se antes conceber o espaço como cheio de
matéria originalmente fluida, susceptível de todas as divisões…não existe corpo que seja duro em grau supremo…ou algum átomo de dureza insuperável nem qualquer massa totalmente indiferente à divisão.” (“Novos Ensaios” em “OS PENSADORES” e “Philosophical Texts” OXFORD P. TEXTS, Oxford Un. Press, 1998).

Leibniz é considerado um precursor das críticas ao tempo absoluto da mecânica, retomadas no século XIX por Ernst Mach (1838-1916), cuja obra influenciou fortemente o pensamento de Einstein.

Mach publicou em 1883 um importante tratado sobre o desenvolvimento histórico da mecânica, no qual a possibilidade de um tempo absoluto é negada. Para o cientista alemão, a própria ideia de tempo é uma abstração, à qual chegamos pela variação das coisas. Não podemos afirmar, por exemplo, que o movimento de um pêndulo ocorre no tempo. Percebemos esse movimento quando comparamos as sucessivas posições do pêndulo com outros pontos (na Terra, por exemplo). Ainda que esses pontos não existissem, a comparação seria possível por meio de nossos pensamentos e sensações, que seriam diferentes em cada momento. Para Mach, a nossa representação do tempo surge a partir de uma correspondência entre o conteúdo de nossa memória e o conteúdo de nossa percepção.
Em sintonia com isso, um movimento só seria interpretado como uniforme quando comparado a outro movimento, também uniforme:

"A questão de que um movimento seja uniforme em si não tem nenhum sentido”

Muito menos podemos falar de um "tempo absoluto" (independente de toda variação). Este tempo absoluto não pode ser medido por nenhum movimento, não tem pois nenhum valor prático nem científico; ninguém está autorizado a dizer que sabe algo dele; não é senão um ocioso conceito metafísico." (4). Mach não endereçava suas críticas somente aos conceitos de espaço e tempo da mecânica de Newton, mas pretendia reformular toda a ciência da mecânica a partir apenas de conceitos relacionais, ou seja, que não envolvessem quantidades absolutas. Ernst Mach - Departamento de Física - UFMG

A Expansão Do Universo Dinâmico De Friedman, E O Universo Estático E Constante de Newton-Einstein

O físico Alexander Friedman (note que temos apenas um n no final de seu sobrenome). Devemos nos lembrar de que o prêmio Nobel de 2011 em física foi dado aos cientistas que, independentemente, confirmaram que o universo está se expandindo de maneira acelerada. Este comportamento da dinâmica do universo fora um dos cenários descritos por Friedman em seu artigo de 1922 sobre novas soluções das equações da relatividade.
Em Petrogrado, um novo e amplo conjunto de soluções surgia. Em 29 de junho de 1922, a revista Zeitschrift fur Physik aceitou um artigo chamado "On the Curvature of Space", Sobre a curvatura do espaço, de A. Friedman.
Neste artigo, Friedmann argumentou que a homogeneidade e isotropia do espaço não necessitava unicamente de um universo estático, como propunha as duas soluções anteriores, ou seja, agora o raio de curvatura poderia variar com o tempo, R = R(t). Partindo deste ponto de vista, Friedmann obteve duas equações diferenciais ordinárias para R(t), que hoje são chamadas equações de Friedmann.

Usando relações matemáticas e obtendo uma única equação, Friedman passou a analisar os três cenários possíveis que sua equação permitia, cenários que dependiam de como o parâmetro constante cosmológico era imputado na equação. Aqui está uma grande diferença entre as soluções de Friedman e as soluções A e B. Nas de Fridmann, a constante cosmológica é um parâmetro totalmente livre, a ser determinado experimentalmente, ao passo que nas soluções A e B a constante cosmológica "controla" a dinâmica do universo, de modo que ele se mantenha estático.
A recepção de Einstein sobre tais soluções foi rejeitá-las de imediato, argumentando que Friedman havia cometido um erro matemático. Escreveu uma pequena nota sobre isso na mesma revista em que o artigo fora publicado. Friedman rebateu imediatamente, mostrando detalhadamente os cálculos a Einstein, que então escreveu uma nova nota para a revista, se retratando, porém ainda assim disse que as soluções encontradas por Friedman não tinham significado físico algum.

Uma curiosidade: Einstein se referiu a Friedman nas notas como Friedmann (dois n's) e, após isso, o próprio Friedman passou a usar dois n's em trabalhos posteriores.

Por fim, em 2011 as ideias de um universo em expansão acelerada foram finalmente reconhecidas e agraciadas com o Nobel de física. Como Friedmann havia escrito em seu livro em 1923, apenas os dados observacionais poderiam julgar qual modelo para o universo seria o predominante.
Em 1929, Edwin Hubble – o mesmo que deu nome ao telescópio mais pop da História – percebeu que, de uma maneira geral, as galáxias estão se afastando umas das outras. O mais intuitivo é dizer que isso é consequência de uma grande explosão e que as galáxias estão voando pelo espaço.

Georges Lemaître."Em 1965, um ano antes de sua morte e já doente em um hospital, recebe com alegria a notícia de que sua Teoria do Big Bang (de 1927) fora confirmada pelos experimentos de Arno Penzias e Robert Woodrow Wilson e era tida como a teoria padrão pela comunidade científica."

Sua teoria é rejeitada nos Estados Unidos, assim como o foi por Albert
Einstein. O Pe. Lemaître, que nunca procurou honras nem reconhecimento, deixa seus trabalhos de cosmologia. Anos depois, em 1948, Gamov propõe uma nova descrição do começo do universo; e embora seja considerado hoje como o pai da teoria do Big Bang, as linhas mestres estavam nitidamente presentes na cosmologia do Pe. Lemaître, que presidiu a Pontifícia Academia das Ciências em 1960. Finalmente, falece em 1966.



Buraco Negro



O conceito moderno de buraco negro como uma região do espaço–tempo da qual a luz não pode escapar tem suas origens no século 18 com o reverendo inglês John Michell (1724–1793) que propôs a existência de estrelas invisíveis para o observador – estrelas escuras– porque a luz não poderia escapar da atração gravitacional gerada por elas.

 

“Einstein rejeitava os buracos negros, tendo declarado em um famoso trabalho publicado em 1939 que eles não existiam”, conta o físico Freeman Dyson, do Instituto de Estudos Avançados, em Princeton (nordeste dos EUA).

 

Entre dois cálculos de trajetórias de artilharia, Schwarzschild notou uma enorme quantidade de peso como uma estrela muito densa, concentrada em uma área pequena, por isso distorcem o tecido do espaço-tempo que nada, nem mesmo a luz consegue escapar de seu campo gravitacional.

Durante várias décadas os físicos têm questionado os cálculos de alemão. Essa ideia permaneceu no estado de uma teoria simples. Mas telescópios espaciais hoje sonda o espaço e encontrar regiões com um enorme campo gravitacional. A maioria dos cientistas consideram estas regiões como buracos negros. Que Michel-Schwarzschild teorizou parece ter se tornado realidade. Essa equação de Karl Schwarzschild , foi desenvolvida antes da equação da relatividade geral de Albert Einstein e Marcel Groiismann


Durante várias décadas os físicos têm questionado os cálculos de alemão. Essa ideia permaneceu no estado de uma teoria simples. Mas telescópios espaciais hoje sonda o espaço e encontrar regiões com um enorme campo gravitacional. A maioria dos cientistas consideram estas regiões como buracos negros. Que Schwarzschild teorizou parece ter se tornado realidade.

Este estudo sobre a geometria do espaço relativista em torno de um ponto de massa, deriva do "raio de Schwarzschild", que define o horizonte ou o limite de um buraco negro. Esta distância é a distância além da qual nem a luz nem a matéria podem escapar da atração gravitacional do buraco negro. Ele também está interessado na transferência de energia próximo à superfície do Sol, eletrodinâmica e óptica geométrica.
Em 1909, ele foi oferecido a posição de prestígio de diretor do Potsdam. Ao longo de sua vida, Schwarzschild se esforça para tornar a astronomia acessível a todas as pessoas e comunicar o seu amor por esta ciência. Assim, durante os oito anos ele era professor em Göttingen, a cursos de astronomia popular tão bem sucedida que o observatório se tornou o lugar de reunião de uma multidão de pessoas.
Quando irrompeu a guerra, ele se alistou como voluntário. Atribuído à artilharia no front russo, ele contraiu uma doença incurável e deve retornar março 1916.
Karl Schwarzschild morreu em Potsdam, no mesmo ano, 11 de maio de 1916.




Relatividade - Luz, Contração Espacial, Inercia, Curvatura, Luz Das Estrelas...




Pela mecânica de NEWTON (1642-1727), a velocidade deveria se somar à velocidade da rotação terrestre e, portanto, um feixe de luz correria mais veloz que um outro direcionado a outro lugar.
Uma experiência de 1887 realizada por MICHELSON-MORLEY, verificou que a luz possuía a mesma velocidade quando direcionada a lugares diferentes (utilizando um prisma, eles dividiram o feixe de lua em duas partes, uma viajando no mesmo sentido da órbita da Terra e a outra na perpendicular) e, resultado, não foram encontradas diferenças diárias ou anuais entre os feixes de luz. Concluíram assim que a luz se deslocava sempre a mesma velocidade em relação a um observador, não importando em que velocidade ou direção ele estivesse se movendo. A velocidade da luz era absoluta.

Com bases nesses experimentos de Michelson-Morley, FITZGERALD e
LORENTZ sugeriram que os corpos se contraem em movimento e que relógios se retardariam.

O primeiro pilar da teoria quântica, foi fincado em 1900, por MAX
PLANCK, Berlim, quando este descobriu que a radiação de um corpo incandescente só podia ser explicada se a luz fosse emitida ou absorvida em pacotes, denominados, Quantum. Em 1905, EINSTEIN, mostrou que a hipótese de Planck podia explicar o efeito fotoelétrico, o modo como certos metais emitem elétrons quando afetados pela a luz.

Com a ajuda de GROSSMANN, Einstein estudou os conceitos de espaços e superfícies curvas de RIEMANN, um trabalho de matemática abstrata; Riemann não esperava que seu trabalho poderia explicar o mundo real. Em 1913, Einstein e Grossmann, escreveram um artigo, onde diziam que às forças gravitacionais. Eram expressões do espaço-tempo curvos. Estes não conseguiram relacionar o espaço-tempo curvo à massa e a energia dele. Einstein descobriu às equações certas em 1915. Ele discutiu suas ideias com o matemático DAVID HILBERT, em 1915, e de forma independente Hilbert, encontrou as mesmas equações antes de Einstein. "O Universo numa Casca de Noz", Stephen Hawking - pg 6, 24 - edição 7. ARX. Adptd.

Em oposição a Newton, Einstein declarava que tudo se acha em movimento (e não que tende e a permanecer em repouso), reafirmando assim o que fora predito, pelo o sábio Hermes Trismesgistus, em seu livro kybalion, no princípio da vibração dizia este: "Nada está em repouso__tudo se move, tudo vibra". Einstein dizia a matéria era “energia condessada”, reafirmando assim, o que predissera Pitágoras, que o substrato da matéria seria energético, e não material, como propôs Leucipo e seu discípulo, o filosofo que ri, Demócrito.

A Teoria da Relatividade diz que o brilho de uma estrela que vemos hoje, pode ser de uma estrela que deixou de existi há muitos anos atrás.

O "derrubador de ídolos", o filosofo do martelo, Nietzsche, disse que:

__as luzes das estrelas mais longínquas chegam
muito mais tarde até nos. Tanto que homem que não as percebeu nega sua existência...".
Além do Bem e do Mal - Prelúdio de uma Filosofia do Futuro.  Friedrch W. Nietzche (pg 257). wvc editora.


O físico irlandês Fitzgerald (1851-1901) audaciosamente sugeriu a contração da matéria. O físico Lorentz (1853-1928) incorporou a contração de  Fitzgerald as suas equações em 1903: os raciocínios matemáticos de Lorentz lhe permitiu imaginar que que o
tamanho de um objeto variava quando sua velocidade aumentava, concluindo  assim, que o único fenômeno que não sofre modificação nesta circunstância é a velocidade da luz. Esta revelação tão surpreendente como a contração de Fitzgerald deu origem a revolução relativista. Explicando a Relatividade – Ronaldo Rogério Mourão. Ediouro.




CAPITULO II



A TEORIA X – DE EDSON ECKS, APLICADA A TEORIA DA RELATIVIDADE



Inúmeras vezes foi Einstein solicitado por pessoas de todas as classes a dar um a síntese compreensiva do que ele entendia por “relatividade “__e nem uma vez Einstein explicou o que era “relatividade” __o que ele afirma sempre de novo em seus livros que a relatividade não e objeto de análise intelectual, e sim de intuição cósmica. Einstein – O Enigma Do Universo (pg
85-86). Martin Claret. Huberto Roden


Definição Irônica Da Relatividade Por Albert Einstein

A secretaria de Einstein, atormentada, por uma série de pessoas, que lhe exigiam uma explicação simples da teoria da relatividade.  Perguntou-lhe. "como devo definir lhes relatividade?". Com um sorriso malicioso, retirando o cachimbo da boca "diga-lhes", respondeu a secretária,

"que quando um rapaz senta-se ao lado de uma bela moça, durante uma hora, tem a impressão que se passou um minuto. Deixei-o senta sobre um fogão quente durante um minuto somente e esse minuto lhe parecera uma hora__Isto é  relatividade. Einstein – O Enigma Do Universo. Martin Claret.

A Teoria Da Relatividade e a negação dos valores absolutos, tanto faz, eu vejo de um jeito, você de outro e, estamos conversados.

Definição Da Teoria X -  De Edson Ecks

No que concerne as p(ercepções) r(elativas) de tempo (do exemplo acima), às sensações temporais, serão r(elativas,ireais...) como poderiam ser absolutas, idênticas,  se houvesse a mesma divisão... de espaço-tempo-dimensões, entre os observadores, porém, ao valor de tempo propriamente dito, ab(soluto), pois uma hora e sempre uma hora, formada de 60 minutos, como um minuto o é de 60 segundos...

Independentemente das sensações temporais r(elativas, ilusórias): tanto do lado da namorada (uma hora como se fosse um minuto), como sentado num fogão quente (um minuto como se fosse uma hora).O fato de não sentir o dia (24 horas) passar, não significa que este não passou__Isto é A Teoria X.

A Teoria X – de Edson Ecks, é a afirmação dos valores abs(olutos, reais, únicos, necessários), mesmo na agregação dos relativos (irreais, ilusórios...) quando o seu relógio marca 4 horas, o tempo pode oscila um
segundo para mais ou um segundo para menos, mais o relógio atômico visa  busca um valor ab(soluto, Calculável...) neste sistema.

Fuso horário relatividade


Em 1883 Henry Poincore se encanjou na sincronização da hora em torno do mundo. Em 1827 apoiou uma proposta sem sucesso das medidas circulares entre eles o tempo e a longitude.
Em 1897, o grande matemático Henry Poincore concluiu que o fuso horário em torno do um mundo só se daria da sincronização do tempo entre corpos em movimento relativo, p.ex., terra lua, sol.
E por isso que Manaus tem um diferencial de uma hora no fuso horário em relação a Brasília. E o Brasil de 24 horas em relação ao Japão, e assim sucessivamente.

A Teoria X - de Edson Ecks

Isto é quando avaliamos o fuso horário espaço dimensional. Mas quando avaliamos pelo a óptica temporal, que é uma construção mental, baseada nos princípios matemáticos de deslocamentos espaço dimensionais, pode-se conjecturar que o tempo como medida é absoluto.
Um minuto é um minuto tanto em Manaus como em Brasília. Na lua ou em marte, coisa que nem um buraco negro pode destruir, ele não pode devorar o abstrato.

Relatividade E O Tempo

O cientista inglês H. J. Hay__concebeu um modelo para o globo terrestre achatado como um disco plano, com o polo norte no centro e o Equador na boda, e fixou um relógio atômico ou radioativo em cada um desses pontos. A previsão de Einstein estava correta: o relógio da boda marcava o tempo mais lentamente que o do centro.
O mesmo acontece com qualquer disco em uma vitrola: a cada volta o seu centro envelhecer mais rapidamente que na boda.

Teoria X - E A Dilatação Temporal

O que faz o disco envelhecer ..., na vitrola, mais no centro do que na boda, e que o centro está sendo forçado..., mais do que a boda, o que o faz desprender mais energia: “enrugando-o”.
Envelhecer (ir à falência, explodir, implodir, contrair, esticar, atrair, anular...) ..., é perder energia, ou desprender mais Do que se retém, ou em excesso, má distribuição... O que serve órgãos-organismos, sentimentos, política, economia, aos buracos negros as partículas subatômicas...

Mc=ec: massa vezes conservação é igual a energia conservada e vice-versa. Elevada a ‘x’, significa a incógnitas dos fenômenos que podem surgir dessa equação.

O Paradoxo Dos Gêmeos Da Relatividade

O paradoxo dos gêmeos, é um experimento mental envolvendo a dilatação temporal, uma das consequências desse paradoxo, é que se um homem faz uma viagem ao espaço em uma nave em alta velocidade, ao retornar para a Terra, estará mais jovem do que o seu irmão que ficou em terra, movendo-se a velocidades cotidianas. Teoria da Relatividade.

Os Gêmeos Sem Paradoxo Da Teoria X

Mas para a Teoria X de Edson Ecks, esses fenômenos de dilatação espaço-tempo-dimensionais, ocorrem em qualquer plano, em qualquer velocidade:

Um gêmeo que passasse dez anos dormindo envelheceria menos do que o que o que passou 10 anos acordado, um gêmeo que passasse dez anos correndo envelheceria mais do que o que passou dez anos andando, um gêmeo que passasse dez anos vivendo no deserto escaldante envelheceria mais do que o que passou em zonas temperadas, um gêmeo que passasse dez anos alimentando-se regulamente envelheceria menos do que o que passou dez anos, alimentando-se desregulamente...
Mc=ec: massa vezes conservação é igual a energia conservada e vice-versa.
“Conservar-se no espaço é viajar no tempo” Ecks

Dimensões X


Nas Dimensões X aplicarei o que fora exposto no ‘Gêmeos sem Paradoxo’, revelando que ‘assim na Terra como no Cosmo’, ocorrem os ‘mesmos’ fenômenos de dilatação, espaço-tempo-dimensionais.

No Cosmo pode haver dimensões, onde nosso fator biológico pode de ser alterado de múltiplas formas, como por exemplo, o que envelhecemos na Terra em setenta anos, lá envelheceriam em 700, ou o que envelhecemos aqui em setenta anos, lá envelheceriam em sete minutos, sete segundos..., ou teríamos a saúde restabelecida de uma doença fatal, ou um uma doença comum seria acelerada, tornando-se uma doença fatal; o corpo pode adquirir outras estruturas, outros paradigmas.


As Dimensões X - podem desenvolver fenômenos mais estranhos do que os da própria ficção.


Também há possibilidade que essas dimensões X, possam a vir servir de atalhos para outros pontos no universo. Que em vias comuns, teríamos de percorrer trilhões de anos-luz, por esses atalhos, diminuiríamos essa distância em milhões, séculos, anos, dias...Ou em alguns anos-luz, quilômetros, metros... Aonde a luz poderia adquirir até mesmo velocidade superior a sua ‘constância’ (300.000 kms), ou sofrer desaceleração. Como também pode haver no universo, dimensões X. Onde a matéria sofreria vários fenômenos de expansibilidade, compressibilidade e etc.


O ESPAÇO RELATIVO E ABSOLUTO DA TEORIA X


Há um erro interpretativo, semântico, da Teoria da Relatividade, quando ela diz que o espaço é relativo, uma régua que tem trinta (trinta) centímetros, para a teoria da relatividade é um espaço relativo, mas esta régua é um espaço absoluto, que tende a se relativar quando lançada em altas velocidades, sofrendo contração no seu corpo, no sentido inverso do seu movimento. Então, nesse momento está régua é um espaço ab(soluto...), que tende a se relativar:

 Para a Teoria X, há corpos, espaços que tendem a permanecerem constantes, absolutos; e há corpos espaços, que tendem a permanecerem inconstantes, relativos. Que é a diferença entre esta régua (de Trinta centímetros) e um corpo gelatinoso.
Por isso desenvolvi o termo Ciensôfia, que é a unificação da ciência com a filosofia, uma ajudando e equilibrando a outra, a filosofia ajudando a ciência a não se dogmatizar, e a ciência ajudando a filosofia a não cair em armadilhas ideológicas, utópicas, fantasiosas. A Teoria X  E Os Princípios Da Ciensofia. Ecks, Edson Ecks


Relatividade ‘espaço – tempo – curvo’

Einstein e Grossman escreveram em conjunto, em 1913, um artigo que expressa que as forças gravitacionais eram apenas expressões do fato do espaço – tempo ser curvo. E o matemático David Hilbert, após discutir com Einstein o espaço – tempo – curvo, em 1915, Hilbert encontrou de forma independente as mesmas equações dias antes de Einstein, e deu-lhes de presente. O universo numa casca de noz, Stephen Hawking, pg. 19. ARX.


Em 1919, observou-se uma pequena deflexão (curva) da luz, ao passar perto do sol, o que teria comprovado a ‘curvatura – espaço – tempo’ de Einstein e Grossman.

Geometria Espaço-Tempo-Dimensional Da Teoria X


Na Teoria X de Edson Ecks, a ‘curvatura – espaço – temporal’, ou qualquer outro fenômeno geométrico – gravitacional, deve-se à conformação... dos elementos gerais que envolvem esses fenômenos, por exemplo: o que desviou o raio luminoso ao passar próximo ao sol, na citação acima, foi à conformação... Solar (densidade, calor, partículas...), em oposição às do raio de luz.
Vale ressaltar que, a curva que a luz faz ao passar próxima do sol, pode não ser absoluta, mas, contendo variáveis, ou seja, uma sequência, por exemplo, de pequenas curvas... Na ‘curva – mestra’. O que aumentaria o tempo do percurso, ou ela teria que compensar de alguma forma seu movimento nesse trajeto.

Efeitos Fotonianos


Pode haver dimensões onde a luz pode sofrer vários fenômenos de aceleração, desaceleração... nestas dimensões poderíamos ver os acontecimentos em câmara lenta, hiper acelerado, quadro a quadro... se realmente um buraco negro sugar os raios de luz ao derredor, então, isto já está acontecendo.

Um exemplo da Simultaneidade da teoria da Relatividade

Um observador a margem dos trilhos observa um trem passar, nesse momento o trem é atingido por dois raios, um na parte da frente do trem e o outro atinge a parte detrás do trem, para este observador os raios atingiram o trem simultaneamente, mas para um observador de dentro do trem, os raios atingiram o trem; um após o outro. Por isso espaço e tempo são relativos para a Teoria da relatividade.


Teoria X – De Edson Ecks

Dentro do campo perceptual, o observador à margem teve uma percepção absoluta. Real, do evento, e o observador de dentro do trem, de uma percepção relativa, ilusória do evento, pois os raios atingiram o trem simultaneamente, não um após o outro, como viu o observador de dentro do trem. Porque os olhos humanos não podem alcançar a verdadeira velocidade dos raios, por isso vemos a simultaneidade nesse exemplo.
Mas para a Teoria X, a questão aqui não é os observadores para o fenômeno, mas o fenômeno para os observadores.
Agora reformularei hipoteticamente os raios atingiram o trem em dois nanos segundos cravados, então o observador externo teve uma percepção absoluta, real do evento. E o de dentro do trem de uma percepção relativa, ilusória do evento, mas para ambos a realidade matemática do evento continua oculta para ambos.


Outro cenário: esses observadores fizeram uma aposta para ver qual dos dois estava certo, então colocaram dois sensores ultrassensíveis um na parte da frente do trem, e outro na parte detrás do trem, e ao passar o trem é atingindo simultaneamente pelo os dois raios, então o observador a margem e o de dentro do trem foram conferir os dados, o raio que atingira a parte da frente do trem chegara dois nanos segundos adiantados em relação ao raio que atingira o sensor da parte detrás do trem. E em uma outra aposta, os raios atingiram simultaneamente os sensores em cravados dois nanos segundos.

Pois bem, para haver entendimento ciensofico nos cálculos e nas percepções, classifico desta forma os exemplos supracitados:
Existe a realidade clássica, esta que vemos e medimos, e existe a realidade infra, que não vemos e não podemos medir naturalmente. Então, na realidade clássica, os raios atingiram o trem simultaneamente, e na realidade infra, os raios atingiram o trem alternadamente com um diferencial de dois nanos segundos, entre um e ou outro impacto. A Teoria X E Os Princípios Da Ciensofia De Edson Ecks

A Teoria da Relatividade é mais óbvia do que se imagina a primeira vista, significa que nossa visão de mundo depender do observador, ou seja, é relativa, por exemplo, quando um avião cruzando os céus, para um observador terrestre ele executa um movimento em linha reta, mas para um observador espacial, o avião faz uma curva.

Para Teoria X, espaço-tempo-dimensões, são relativos, se houver percepções, cálculos desiguais entre os observadores, e absoluto, se houve percepções, cálculos iguais entre os observadores. Por isso no exemplo acima, é Improvável que o avião faça uma reta e uma curva ao mesmo tempo, o mesmo serve para o fenômeno do átomo está em dois lugares ao mesmo tempo.

Sobre o tempo relativo, Einstein respondeu ironicamente para um repórter: 'Se um rapaz está sentado ao lado de uma bela moça. Uma hora passara como se fosse um minuto, e sentado num fogão quente, um minuto passar como se fosse uma hora. Isto é Relatividade.

Para a Teoria X - de Edson Ecks, neste exemplo somente as percepções, sensações são relativas (ilusórias...), mas os tempos destes eventos são absolutos, únicos, tanto sentado ao lado da bela moça, uma hora como se fosse um minuto, como sentado no fogão quente, um minuto como se fosse uma hora.
Porque um minuto é formado de sessenta segundos, e uma hora é formada por sessenta minutos, aqui, em Marte ou em Andrômeda.


Fuso horário relatividade

Em 1883 Henry Poincore se encanjou na sincronização da hora em torno do mundo. Em 1827 apoiou uma proposta sem sucesso das medidas circulares entre eles o tempo e a longitude.
Em 1897, o grande matemático Henry Poincore concluiu que o fuso horário em torno do um mundo só se daria da sincronização do tempo entre corpos em movimento relativo.
E por isso que Manaus tem um diferencial de uma hora no fuso horário em relação a Brasília. E o Brasil de 24 horas em relação ao Japão, e assim sucessivamente.


Teoria X - De Edson Ecks


Isto é quando avaliamos o fuso horário espaço dimensional. Mas quando avaliamos pelo a óptica temporal, que é uma construção mental, baseada nos princípios matemáticos de deslocamentos espaço dimensionais, pode-se conjecturar que o tempo como medida é absoluto.

Um minuto é um minuto tanto em Manaus como em Brasília. Na lua ou em marte, coisa que nem um buraco negro pode destruir, ele não devorar o abstrato.

Massa Se Converte Em Energia?

Para a Teoria da Relatividade, massa se converte em energia e vice-versa. Mas para a Teoria X de Edson Ecks, massa e energia não se convertem uma na outra, pois o são polaridades de um único fenômeno.

As leis da física são idênticas em qualquer referencial inercial alguém que não esteja acelerando ou desacelerando.

Se você por um jarro de pipoca no fundo do seu quintal, e sentar em uma cadeira a sua frente, você não verá nenhum acontecimento, ai você pega esse mesmo jarro de pipoca e repete o mesmo experimento, num carro com vidros escurecidos, com o carro se movendo em uma velocidade constante. O que acontecera? Nada, pela a Teoria da Relatividade, as leis da física foram iguais entre esses eventos.

Teoria X

Mas para a Teoria - X de Edson Ecks, ao mudar o jarro de pipoca de um campo para outro campo, as leis físicas se modificaram, por exemplo, o jarro de pipoca quando posto no fundo do quintal, recebeu mais umidade, e quando posto dentro do carro fechado, com vidros escurecidos, recebeu mais frio advindo do ar-condicionado do carro, e mesmo que este carro esteja se movimentando numa rua, bastante ‘lisinha’, com pouquíssimo

atrito, ainda sofrera algum tipo de trepidação, vibração, do carro contra o ar, e dos pneus contra o asfalto... à curto, médio ou longo prazo as coordenadas não serão mais idênticas, como propõe a Teoria da Relatividade


A Teoria da Relatividade diz que tanto o Sol gira em torno da Terra, como a Terra gira em torno do Sol.


A Teoria X de Edson Ecks, diz que aparentemente tanto o Sol como a Terra giram em torno um do outro, mas há leis físicas poderosas entre estes astros, a Terra, minúscula em relação ao Sol, possui mínima força, em relação ao Sol, por isso a Terra está ‘presa’ a orbita Solar. Por isso, o Sol faz a Terra gira em torno dele.

Ao adentrar uma rua reta, você à vera larga na entrada e estreitando adiante, neste plano, estamos diante de uma p(ercepção) r(elativa, porque um individuo avistando-a do céu à vera como esta realmente é, reta; este observador teria a p(ercepção) ab(soluta) sobre a geometria da rua. Mas, para este observador da rua ter noções de profundidade (sem a qual ficaria desorientado) ..., neste plano, ela ( a percepção), tornar-se-ia uma p(ercepçao) r(eal), ou seja, por um lado ela é r(elativa, irreal) , e por outro, ab(soluta, verdadeira).


ONDAS GRAVITACIONAIS DA RELATIVIDADE

O raciocínio de Pitágoras (570 a.c-490 ac.) considerava as proporções, os movimentos dos corpos celestes, do Sol, da Lua como dos planetas como forma de música, que estes emanavam pelo o espaço.
O grande Kelper acreditava na sinfonia do Universo, que os astros emanavam seus cânticos (ondas sonoras) que seria possível até identificar as ‘notas musicais da música Pitagórica’. Em linguagem moderna, é o que chamamos de ‘ondas gravitacionais’, que nos trazem essa música até aos nossos ouvidos.  Ouça Kepler:

A possibilidade de existirem ondas gravitacionais foi discutida em 1893 por Oliver Heaviside usando a analogia entre a lei do inverso do quadrado da distância em gravitação e eletricidade. Em 1905, Henri Poincaré propôs pela primeira vez as ondas gravitacionais (ondes gratifiques), que emanavam de um corpo e se propagavam à velocidade da luz, como exigiam as transformações de Lorentz e sugeriam que, em analogia com uma carga elétrica aceleradora produzindo ondas eletromagnéticas, massas aceleradas em uma teoria relativística de campo da gravidade devem produzir ondas gravitacionais. Quando Einstein-Grossmann publicaram sua teoria geral da relatividade em 1915, a teoria deles era céptica da ideia de Poincaré, já que a teoria implicava não haverem "dipolos gravitacionais". No entanto, ele ainda perseguiu a ideia e, com base em várias aproximações, chegou à conclusão que, deveria haver, de fato, três tipos de onda gravitacional (nomeadas por Hermann Weyl como longitudinalmente-longitudinal, transversalmente-longitudinal e transversalmente transversal).

Essas aproximações feitas por Einstein receberam críticas de diversos pesquisadores e até Einstein teve dúvidas. Em 1922, Arthur Eddington escreveu um artigo intitulado "A propagação de ondas gravitacionais, no qual mostrou que dois dos três tipos de ondas propostas por Einstein podiam viajar a qualquer velocidade e esta velocidade depende do sistema de coordenadas; portanto, eram na verdade ondas espúrias. O problema que Eddington encontrou nos cálculos originais de Einstein é que o sistema de coordenadas que ele usou era por si só, um sistema "ondulado" e, portanto, dois dos três tipos de onda era simplesmente espaço plano visto a partir de um sistema de coordenadas onduladas; ou seja, os artefatos matemáticos foram produzidos pelo sistema de coordenadas e não eram realmente ondas. Isso também colocou dúvidas sobre a fisicalidade do terceiro tipo (transversalmente transversal), entretanto, Eddington provou que essas viajariam à velocidade da luz em todos os sistemas de coordenadas, então não descartou sua existência.
Em 1956, Felix Pirani corrigiu a confusão causada pelo uso de vários sistemas de coordenadas, reformulando as ondas gravitacionais em termos do tensor de curvatura Riemann manifestamente observável. Na época, Pirani teve seu trabalho ignorado principalmente porque a comunidade científica estava focada em uma questão diferente: se as ondas gravitacionais poderiam transmitir energia. Este assunto foi resolvido por um experimento de pensamento proposto por Richard Feynman durante a primeira conferência "GR" em Chapel Hill em 1957. Em suma, seu argumento (conhecido como o "Sticky bead argument" ou “argumento das contas pegajosas”) observa que, se alguém tomar uma haste com contas (como miçangas), então o efeito de uma onda gravitacional passante seria mover as contas ao longo da haste; A fricção então produziria calor, o que implicava que a onda passante fizesse o trabalho. Pouco depois, Hermann Bondi (uma antiga céptica de onda gravitacional) publicou uma versão detalhada do "sticky bead argument".
Após a conferência de Chapel Hill, Joseph Weber começou a projetar e construir os primeiros detectores de ondas gravitacionais agora conhecidos como barras de Weber. Em 1969, Weber afirmou ter detectado as primeiras ondas gravitacionais, e em 1970 ele estava "detectando" sinais regularmente do Centro Galáctico; No entanto, a frequência de detecção rapidamente suscitou dúvidas sobre a validade de suas observações.

Até 2015, nenhuma "radiação gravitacional" tinha sido satisfatoriamente observada. A teoria quantizada da radiação prevê que o pacote de onda da gravidade seria a partícula gráviton, que ainda também não foi observada. Existem diversos experimentos ao redor do mundo que buscam evidências de ondas gravitacionais. Muitos se baseiam em tentar detectar alterações da energia interna de corpos maciços a temperaturas baixíssimas (criogênicas), em sistemas de alto vácuo sob isolamento vibracional, em laboratório. Essas alterações da energia interna seriam supostamente causadas pela passagem de ondas gravitacionais oriundas de megaeventos no espaço, como o choque de estrelas. O Detector Mario Schenberg é um detector de ondas gravitacionais brasileiro que utiliza deste princípio de detecção. Ele estava instalado na Universidade de São Paulo, mas foi transferido para o Instituto Nacional de Pesquisas Espaciais, onde será remontado.

A existência de ondas gravitacionais é uma possível consequência da covariância de Lorentz da relatividade geral, uma vez que traz o conceito de uma velocidade finita de propagação de interações físicas consigo. Em contraste, as ondas gravitacionais não existiam na teoria newtoniana da gravitação, que postula que as interações físicas propagam-se em velocidade infinita. Antes da detecção direta de ondas gravitacionais (ver abaixo), já havia evidências indiretas sobre a sua existência. Por exemplo, as medições do sistema binário Hulse-Taylor sugeriram que as ondas gravitacionais eram mais do que um conceito hipotético. As fontes potenciais de ondas gravitacionais detectáveis incluem sistemas estelares binários compostos por anãs brancas, estrelas de nêutrons e buracos negros.
Para entender como a relatividade conseguiu prever a existência de ondas gravitacionais ainda que não pudesse detectá-las, é preciso entender por que seria necessário que algo como uma onda gravitacional existisse: a Terra continua em sua órbita aproximadamente circular ao redor do Sol por causa da atração gravitacional do Sol, cujo tamanho da órbita depende da massa do Sol. No entanto, se ele começa a perder massa (suponha, por exemplo, que existe uma explosão interna que tem o efeito de disparar dois grandes pedaços do Sol em direções opostas em ângulo reto ao plano da órbita da Terra), a maior parte do Sol permanecerá no mesmo lugar, mas a órbita da Terra será afetada. Como o Sol agora será um pouco mais leve, a Terra será menos fortemente atraída por ele, e sua órbita ficará um pouco maior. A questão é: quanto tempo leva a Terra para perceber que o Sol já não é tão maciço quanto era? Ela começa a embarcar em seu novo curso imediatamente, ou é preciso um período para que a Terra perceba que algo aconteceu com o Sol? Dado que, de acordo com a teoria de Einstein, nada pode viajar mais rápido do que a luz, a Terra não saberia que o Sol estava perdendo massa por pelo menos oito minutos - o tempo que levaria para a luz viajar do Sol para Terra; O Sol, por assim dizer, teria que enviar uma mensagem para a Terra, e essa mensagem não poderia viajar mais rápido do que a velocidade da luz. Para entender como essa mensagem viaja, é preciso pensar em algo como uma onda, uma onda gravitacional, que transmite a informação que a forma do espaço-tempo está mudando. Assim, uma maneira de pensar sobre a radiação gravitacional é como o mensageiro que transporta informações sobre mudanças nos campos gravitacionais que atraem uma coisa para outra.

Vários observatórios de ondas gravitacionais (detectores) estão em construção ou em operação ao redor do mundo. Em 2017, o Prêmio Nobel de Física foi concedido a Rainer Weiss , Kip Thorne e Barry Barish por seu papel na detecção de ondas gravitacionais.

A descoberta é resultado do projeto LIGO (Observatório de Ondas Gravitacionais por Interferometria a Laser) da National Science Foundation (NSF), e do detector de ondas gravitacionais VIRGO, instalado na Europa, que procura objetos cósmicos coalescentes, como pares de buracos negros e pares de estrelas de nêutrons.
A segunda etapa, de 30 de novembro de 2016 a 25 de agosto de 2017, resultou em uma fusão binária de estrelas de nêutrons e sete novas fusões binárias de buraco negro, incluindo os quatro novos eventos de ondas gravitacionais – nomeados de GW170729, GW170809, GW170818 e GW170823, em referência às datas em que foram detectados.
Segundo os astrônomos do LIGO, o GW170729 é a fonte de ondas gravitacionais mais massiva e distante já observada. Nesta coalescência (mistura química), que aconteceu há cerca de cinco bilhões de anos, uma energia de quase cinco massas solares foi convertida em radiação gravitacional.
Já GW170814 foi a primeira fusão binária de buracos negros medida pela rede de três detectores e permitiu os primeiros testes de polarização por ondas gravitacionais (análogos à polarização de luz).

Na física, as ondas gravitacionais são ondulações na curvatura do espaço-tempo que se propagam como ondas, viajando para o exterior a partir da fonte. Elas são incrivelmente rápidas, viajam à velocidade da luz (299.792 quilômetros por segundo) e espremem e esticam qualquer coisa em seu caminho ao passarem.

Previstas em 1916 por Albert Einstein-Groismann com base em sua teoria da relatividade geral, e detectadas em 2015, as ondas gravitacionais transportam energia na forma de radiação gravitacional. A teoria geral da relatividade de Einstein-Groismann prevê que a presença de massa causa uma curvatura no espaço-tempo. Quando objetos maciços se fundem, essa curvatura pode ser alterada, enviando ondulações para fora do universo. Estas são conhecidas como ondas gravitacionais. Com o tempo que esses distúrbios nos alcançam, eles são quase imperceptíveis. Foi apenas um século após a previsão de Einstein que os cientistas desenvolveram um detector sensível o suficiente - o Laser Interferometer Gravitational-Wave Observatory ou LIGO - e conseguiram confirmar a existência de ondas gravitacionais.

As Ondas Gravitacionais Da Teoria X De Edson Ecks

“Tudo que se move produz energia, produz ondas (ou as recebem de outros sistemas), o bater de asas de um beija-flor, uma molécula se movendo, a Lua, uma Galáxia... comensuráveis e ‘incomensuráveis”
Ecks


Temos um problema cabal nesse experimento da LIGO, ele se justifica pelo o que ainda não foi justificado, que ainda é apenas uma hipótese, e não ‘importa’, quanto indício os justifique, são apenas indícios muitos distantes de nosso alcance, ate mesmo da nossa intuição, pois os buracos negros ainda não foram comprovados cientificamente. Logo, não temos a certeza absoluta (apenas relativamente) de onde veio às ondas gravitacionais detectadas aqui na Terra, pelo o centro LIGO.

O filosofo Nietzsche especulava em seu livro ‘Para além Do Bem E Do Mal’, que:

“__as luzes das estrelas mais longínquas chegam muito mais tarde até nos. Tanto que homem que não as percebeu nega sua existência...".

A Relatividade dirá que essa informação eletromagnética (luz das estrelas) se curvará ao passa próxima a um corpo massivo como o Sol.  Essas informações em conjunto com as ondas gravitacionais tanto poderemos rastrear o Universo visualmente, como sonoramente, tanto pelas as ondas gravitacionais como pelos os fenômenos eletromagnéticos...

AS ONDAS GRAVITACIONAIS DA TEORIA X DE EDSON ECKS


Quando uma mariposa bate suas asas, a energia desse movimento gera uma onda, que é imediatamente ‘engolida’, pelas as ondas de ar ao derredor dela. Quando uma estrela explode, megatons de energia se espalham, até resultar em ondas (frequências, ondulações...) que se espalham pelo o Universo, até sua dissipação pelo o próprio espaço, como no caso do bater de asas do beija-flor. O ‘mesmo’ ocorre com girar de um átomo, o pelo o girar do Sol:
Estava caminhando quando vi uma folha cruzando o espaço, e pensei como as ondas gravitacionais são transportadoras e produtoras dos movimentos, e carregadoras das informações em seus níveis fisenergéticos.

Sábado quando estava meditando com esse tema, era noite e estava chovendo, encostei-me à grande da janela de casa que estava aberta, e coloquei-me a observar o campo de futebol do outro lado da rua, e observei que, no campo havia uma parte gramada e no meio desta havia um vão que formou um tapete de água, e estava chuviscando, os chuviscos caindo no tapete d água geraram pequenas ondas, e fiquei admirando aquele evento, então joguei esse exemplo dos chuviscos para ondas gravitacionais, e imaginei esse tapete d´agua como o universo, os astros... liberando ondas, umas se fundindo com as outras, contaminado as informações de umas com as outras, ou copiando e carregando-as consigo. Acoplando esse pensamento com sistema micro, ‘ouvir’ o som do átomo e no macro, som do Sol. E ‘vi’ as ondas mecânicas e eletromagnéticas, cruzando pelo o espaço.

Olhe para o céu agora, e imagine se você pudesse ver os sinais de wi-fi, os sinais transmitidos pelo os satélites, a radiação solar, as ondas eletromagnéticas ‘entrelaçadas’ pelo o nosso céu, é isso que ‘vejo’.

Por isso que o experimento da LIGo, pode ter detectado ondas gravitacionais vindas de outra, ou outras fontes. Não da colisão de dois buracos negros, pois ainda não foram comprovados cientificamente.




TEORIA DO CAOS DE HENRY POINCORE E A TEORIA CAOSORDEMÁTICA E O EFEITO MARIPOSA - DE EDSON X (Ecks)

EFEITO MARIPOSA DE EDSON ECKS



Mariposa um inseto geralmente de hábitos noturnos, símbolo da morte que transforma – a transformação da lagarta ou imortalidade, renascer – bem como simboliza a forca destrutiva da paixão. 
Como a borboleta a mariposa também passa por um processo metamorfo, tão significativo como símbolo da transformação.
Para os astecas, a mariposa era conhecida como o ‘Sol Negro’, pois atravessa mundos subterrâneos em sua viagem noturna. Para o índio mexicano, a mariposa espalha centelhas de sabedoria por sobre a cabeça da pessoa que ela sobrevoa, gerando transformação, expansão da consciência.
Como as mariposas estão sempre buscando a luz, também simbolizam a busca pelo o conhecimento, a busca pela a verdade.
Diz o poeta: A mariposa não busca a luz efêmera e artificial das lâmpadas, mas a luz singular e imperecível do Sol.
Em algumas culturas, representam maus presságios, morte, e em outras culturas, Boaventura e vida.
As mariposas são movimentos nas sombras, sentem-se atraídas pela a luz, simbolizando a busca pela a verdade, mesmo que fira. Assim como a alma se sente atraída pelo o misterioso, metafisico, também é força consumidora da paixão, pois voam em torno do fogo, sentem-se atraídas por quilo que pode mata-las, assim como nós seres humanos, nós lançamos, lutamos, encantados, autisciados, em prol do amor, desejos e ideais.
As mariposas se parecem conosco, apaixonados, desesperados, extasiados, dessa ânsia dessa aproximação (da luz) que pode se tornar cada vez mais fatal.
As mariposas buscam a solidão, e muitas vezes escolhem justamente o calor dos lares humanos, para findar seus dias na Terra.


Então, ao se deparar com uma Mariposa, recite esses versos que aprendera em minha infância lá no interior do Pará, Amazonas:


Mariposa que me bate à porta
Traz-me o doce ou o amargo, Vida ou morte.
Amor ou ódio, Azar ou sorte
Me deixarás perdido,
Ou me indicarás o Norte? Edson Ecks


E aguarde a mariposa (Vida) sempre responde de um jeito ou de outro!



Efeito Mariposa Da Teoria Caosordemática De Edson Exs




 O Efeito Mariposa (Em), na teoria da Caosordemática de Edson X,  se funde com o Efeito Borboleta, ramificado da Teoria do Coas de Henry Poincore, revelando os sistemas caóticos e ordemáticos, seus processos prováveis, improváveis, determinados e indeterminados, no caos e na ordem.

Em 1890, Henry Poincore, considerado o ‘Ultimo matemático universalista’, descreve o famigerado problema dos três corpos newtoniano, observa a possibilidade de um sistema determinístico, exibir comportamento aperiódico, que dependeria sensivelmente das condições iniciais – O Caos.

O que o fez pensar de forma contraria ao pensamento dos estudiosos da época seguidores de Newton e Laplace, ao invés de perguntar as posições exatas dos planetas em todos os instantes do tempo, Poincore pergunta por exemplo, se o sistema solar será estável para sempre.
A noção de Poincore, é que uma alteração pequena e imperceptível, nas condições iniciais, poderia causar uma tempestade inevitável.

Aleksander Yapunov, estudando a transição da estabilidade para a instabilidade dos fluidos, percebeu que os sistemas passavam de tranquilos para turbulentos, que se passou a chamar de ponta de virada, números de transição entre a ordem e o caos:
É o que acontece com a fumaça de um cigarro, ela passa de linear, para não-linear, e para o caótico, quando a fumaça se espalhar pelo o ar e não é mais possível calculá-la.
O meteorologista Edward Lorenz, também percebeu que os sistemas climáticos também passavam por processos caóticos daí a celebre analogia do Efeito Borboleta: ‘O bater de asas de uma borboleta no Brasil, pode causar um furacão no Japão’

Mas o Efeito Mariposa da Teoria Caosordemática de Edson Exs, acopla... o processo caótico de Henry Poincore, que pequenas e imperceptíveis mudanças, podem causar um furacão inevitável, com o Efeito Borboleta de Lorenz, advindo de gráficos computacionais. Onde reformulo a famosa frase para: 

‘O bater de asas de uma Mariposa no Brasil pode causar um furacão no Japão, e um furacão no Japão, pode findar num simples bater de asas de uma mariposa no Brasil’

Que significa que os sistemas tendem a passar, dos processos ordemáticos para os caóticos, dos caóticos para os ordemáticos, mas os ordemáticos são os que vingam mais, por isso, as previsões meteorológicas são mais precisas do que imprecisas, ‘o mesmo’ ocorre no o átomo, como no cérebro e etc.
Se o sistema atômico começasse a apresentar mais sistemas caóticos do que ordemáticos, tudo se extinguiria, ou tudo se transformaria de forma muito estranha, e no cérebro, todos enlouqueceriam, e a sociedade humana se extinguiria. Mas na velhice, os sistemas caóticos superam os ordemáticos, e fazem as pontas de viradas, números de transições entre o orgânico e o inorgânico:
Porque assim como a morte devora a vida, a vida devora a morte, o animado se alimenta do inanimado, mas no final são apenas energia devorando energias, se fundindo, energias em transformações,

Para a teoria do Caos certos resultados determinados são causados pela a ação, iteração de elementos de forma praticamente aleatórios. Um exemplo da natureza onde esses fenômenos são comuns é a formação de uma tempestade, que pode ser desencadeada, e se desenvolver com base em centenas de fatores, calor, frio, evaporação da água, ventos, o clima, condições do Sol, eventos sobre a superfície, até gera a colisão de duas nuvens de cargas positivas, e forma a tempestade. Essa que a milhares de anos ‘faz’ brotar a Vida na Terra.

Mas para o Efeito Mariposa de Edson Exs, esses fenômenos não são aleatórios, esses fenômenos complexos se juntam para forma um fenômeno ‘singular’: a tempestade. Se esses fenômenos fossem aleatórios, jamais formariam a tempestade. Porque para esses fenômenos se aglutinarem, eles têm de alguma forma de possuir, sistemas combinatórios, complementares...
Os ditos efeitos ‘caóticos, aleatórios’, não são imprevisíveis, apenas ainda incalculáveis, o que nos leva a graus de incertezas nas previsões, cálculos... e sobre o futuro.



Expandindo o exemplo



Gotículas de agua ascendem para o céu, forma uma nuvem, essa nuvem carregada vai se chocar com outra nuvem carregada, esse choque gera uma tempestade, que vai desabar cargas d`águas para o solo, em um ponto vai enxergar um barranco e causar desmoronamentos, mas em um outro ponto vai regar o solo de um agricultor, de onde colherá belas maças.

Por isso, grandes ou pequenas alterações em nossa vida e no Mundo, como nos sistemas, podem resultar em sequencias de eventos bons (ordemáticos), ou ruins (não-linear, caóticos), prováveis, improváveis, determinados, indeterminados.

O que fará Nietzsche dizer depois de se recuperar de uma doença devastadora:

‘Aquilo que não me mata, me fortalece’

Ou seja, através da desordem dessa enfermidade, e no ordenamento de sua saúde, ele se fortalece, através dessa experiência, física-emocional.

No dia-a-dia, o Efeito Mariposa faz parte de nossas vidas, por isso temos: sistema jurídico, educacionais, hospitais, funerárias, filosofia, ciência, religiões, redes de esgotos, elétrica, wifi, jogamos o lixo, nos assearmos, limpamos a pia.
Mas o elemento que possuí Autis de limpeza, a popular ‘mania de limpeza’, um simples grão de arroz caindo em cima de sua limpíssima pia, causar-lhe um caos em seus neurônios, mais do que em uma pessoa sem essa Autis, ‘essa mania de limpeza’.


Efeito Mariposa No Dia-A-Dia


Uma mulher consegue um emprego, mas ao sai de casa, começa a chover, e mais adiante dá uma topada numa pedra, e cai na poça d’água, volta para casa, fica angustiada, falta ao primeiro dia de trabalho, e é dispensada.
O caos se estabelece em sua vida, aluguel atrasado, contas se amontoam, credores batem à porta. O que a faz indagar: ‘E se aquela maldita pedra não estivesse ali, tudo teria dado certo!’
Mas que ela não sabe é que mesmo que a pedra não estivesse ali ‘no meio do seu caminho’, processos prováveis, improváveis, determinados, indeterminados, poderiam tê-la feito cair da ‘mesma forma’ na poça de água da rua, por várias situações e oscilações entre eles, o fator determinístico então será: cair na poça d’água:

Um vizinho dela ao passar pela a calçada, lhe chama a atenção, lhe acena, retribui o cumprimento, e acena para ele, pisa na poça d’água e cai.

Ela fica olhando para um mendigo que pede esmolas na calcada, que cantava uma música que dizia: ‘Flores e Espinhos surgirão em meu caminho’, e passa a ‘filosofar’: ‘O que aconteceu para ele se encontrar nessa situação?’ só sei de uma coisa, se não tivesse arranjado esse emprego, ele teria uma ‘rival’ aqui nessa área. Riu com os cantos dos lábios, distraída, pisa na poça d’água, e cai.

Perde o primeiro dia de trabalho, mas à tarde daquele mesmo dia, outra empresa lhe oferece um emprego onde ganhara o dobro da outra, com carga horária menor.






Efeito Mariposa – Edson Exs









COMENTÁRIOS

POSTAGENS MAIS VISITADAS



COMENTÁRIOS

  1. Para a Seleção Biométrica estão inclusos em seus processos os fenômenos bio- fisioquimicos desde do núcleo da Terra até os Espaciais .

    A Biométricidade representa toda a estrutura do núcleo da Terra até o Espaço . O que inclui sua termodinâmica, desde do núcleo terrestre, massa d'água, campo magnético...

    E dos fenômenos que vem do espaço para a Terra, como as partículas de nêutrinos , Os raios cósmicos são partículas de alta energia que vêm do espaço e bombardeiam a Terra de todos os lados. Os raios cósmicos podem causar alterações genéticas em organismos vivos, em suma : para a vida existir , é necessário que exista o próprio Universo.

    Assim como nossos corpos atraem a Terra, e a Terra nos atrai , similar acontecer com seres vivos e os ambientes , não é apenas o ambiente que modifica o seres vivos , mas os corpos dos seres vivos também são ' atraídos ' pelos os mesmos processos bio- fisioquimicos entre seus corpos e ambiente e vice e versa . Não não conformidade haverá a extinção do organismo , ou ambiente .

    Nao é só adquirir caracteres , mas também perder caracteres faz um ser vivo persistir , manter sua existência.

    Não é só o organismo que depende do meu ambiente , mas o meio ambiente também depende do organismo , nisso faço a seguinte pergunta :

    "Se retiro todos os seres vivos móveis do planeta, o que aconteceria com o meio ambiente ?

    A Seleção Biométrica diz que ambiente também seleciona ambientes , assim como também pode selecionar animais prejudiciais a ele, ou saudáveis ao ambiente

    Para a seleção Biométrica não há aleatoriedade nos processos bio- fisioquimicos, porque para a seleção Biométrica, cada efeito é gerado por um emaranhado de causas , que formam determinado efeito , ou seja , a vida é histórica .

    Cada vez mais que conhecemos sua história , diminuímos sua imprevisibilidade, sua aleatoriedade.

    RESPONDEREXCLUIR

Comentários

  1. Bom dia , grande Gê


    Pois bem , nos textos sempre coloco 'hipoteses' , pois sei exatamente o que estou fazendo . Levaria uns dez anos para que eu chegasse numa matemática para incrementar as minhas ideias : não vivo financeiramente da literatura que produzo, seja ela , filosófica, científica ou ficcional .

    2

    Por isso desenvolvo hipóteses e leis , assim suplanto essa questão . O que faço ?

    Uso minha inteligência: os artigos que público já estão repletos de matemática, dos pesquisadores, que colaboram com minhas hipóteses ou leis .

    Pois sabia que existe uma falar de cultura filosófica muito grande , hoje em dia, quando digo isso para uma pessoa da filosofia , ela entende logo :

    Sétima lei, a lei das constantes e inconstantes.

    Nenhuma constante é constante, nenhuma inconstante é inconstante, em todos os lugares, indefinidamente.

    Ela vai dissecar na hora essa Idea , que o que é aqui , pode não ser aqui aqui , lá e acolá .


    Que uma mulher que ama homem aqui , pode não ama-lo mais acolá (em outras circunstâncias). Que um urso polar não pode sobreviver na África , que um leão africano não pode sobreviver no polo norte

    A Constante G é de conhecimento Universal , então , ele vai entender que a constante G, conforme a Sétima Lei , ela também não funciona da mesma forma em todo o Universo.

    Na verdade já sabemos que a constante G, em suas medições não é constante em toda a parte da Terra.

    Agora vamos mais para a nossa parte : a constante de Hubble, tem se detectado variações dela em outras regiões espaciais .

    Finalizando , esse estudo recente visa mostrar que a Relatividade geral também não é constante em todo o Universo.

    Entendeu ? É isso que significa uma lei , ela explica como funcionar um fenômeno , a Teoria explica o ' porque ' dele funcionar .

    Uma Lei é aplicável , e você pode fazer isso , independentemente .



    Então , peguei os artigos e mostro através deles que minhas hipóteses e leis são consistentes : não jogo dama, jogo xadrez .



    https://edson-exs.blogspot.com/2024/11/sera-que-teoria-de-einstein-so-vale-na.html

    ResponderExcluir

Postar um comentário

Postagens mais visitadas